• Title/Summary/Keyword: NO Oxidation

Search Result 1,379, Processing Time 0.034 seconds

Effect of Mo and Mn Addition on the Oxidation Behavior of Binary Ti-Al Alloys

  • Han, Chang-Suk;Jin, Sung-Yooun;Bang, Hyo-In
    • Korean Journal of Materials Research
    • /
    • v.28 no.6
    • /
    • pp.361-364
    • /
    • 2018
  • Binary Ti-Al alloys below 51.0 mass%Al content exhibit a breakaway, transferring from parabolic to linear rate law. The second $Al_2O_3$ layer might have some protectiveness before breakaway. Ti-63.1 mass%Al oxidized at 1173 K under parabolic law. Breakaway oxidation is observed in every alloy, except for Ti-63.1 mass%Al. After breakaway, oxidation rates of the binary TiAl alloys below 34.5 mass%Al obey almost linear kinetics. The corrosion rate of Ti-63.1 mass%Al appears to be almost parabolic. As content greater than 63.0 mass% is found to be necessary to form a protective alumina film. Addition of Mo improves the oxidation resistance dramatically. No breakaway is observed at 1123 K, and breakaway is delayed by Mo addition at 1173 K. At 1123 K, no breakaway, but a parabolic increase in mass gain, are observed in the Mo-added TiAl alloys. The binary Ti-34.5 mass%Al exhibits a transfer from parabolic to linear kinetics. At 1173 K, the binary alloys show vary fast linear oxidation and even the Mo-added alloys exhibit breakaway oxidation. The 2.0 mass%Mo-added TiAl exhibits a slope between linear and parabolic. At values of 4.0 and 6.0 mass% added TiAl alloys, slightly larger rates are observed than those for the parabolic rate law, even after breakaway. On those alloys, the second $Al_2O_3$ layer appears to be persistently continuous. Oxidation resistance is considerably degraded by the addition of Mn. Mn appears to have the effect of breaking the continuity of the second $Al_2O_3$ layer.

S-Thiolation and Oxidation of Glycogen Phosphorylase b and Peroxidation of Liposome Initiated by Free Radical Species

  • Lee, Kyu-Sun;Lee, Hyung-Min;Park, Young-Mee;Chang, Byeong-Doo;Chung, Tae-Young;Choi, Eun-Mi
    • BMB Reports
    • /
    • v.29 no.1
    • /
    • pp.81-87
    • /
    • 1996
  • The relationship of S-thiolation and oxidation of glycogen phosphorylase b and peroxidation of phosphatidyl choline liposome by xanthine oxidase (XOD), 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH), and 2,2'-azobis(dimethylvaleronitrile) (AMVN)-generated free radicals was investigated, Glycogen phosphorylase b was S-thiolated in the presence of glutathione and oxidized in the absence of it by XOD, AAPH and AMVN. In XOD-initiated reaction, the rates of S-thiolation and oxidation of phosphorylase were very similar and addition of liposome to the reaction mixture showed little inhibition of the modifications. In AAPH-initiated reaction, the rate of oxidation was higher than that of S-thiolation and addition of liposome increased oxidation of the protein but had no effect on S-thiolation. In AMVN-initiated reaction, S-thiolation was higher than oxidation and addition of liposome increased S-thiolation remarkably but showed no effect on oxidation. The effect of liposome on modifications of protein in AAPH and AMVN reaction seemed to be caused by certain reactive degradation products or intermediates of liposome by free radical attack. Peroxidation of liposome was not observed in XOD-initiated reaction. Liposome was gradually peroxidized by AAPH reaction. The peroxidation was inhibited by addition of GSH and phosphorylase. Peroxidation of liposome by AMVN was extreamly fast, and was not affected by GSH and phosphorylase.

  • PDF

The Studies of Photocatalyst Development and the Optimum Operation Conditions for the Removal of Ammonia in a Mixed Reactor of Liquid-vapor Phase (기-액 복합 광반응기에서의 악취성 암모니아 제거를 위한 촉매개발과 반응시스템의 최적조건 색출 연구)

  • Kim, Hae-Ri;Jeon, Min-Kyu;Kim, Joon-Woo;Joo, Gwang-Tae;Choung, Suk-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.5
    • /
    • pp.512-522
    • /
    • 2008
  • Ammonia is a major compound of odor in livestock house. To enhance the performance of ammonia oxidation (decomposition). the gas-liquid, two phase photocatalytic oxidation system was designed and prepared in this study. Commercial P-25 as $TiO_2$ catalyst was used for ammonia decomposition. V/P-25 catalyst prepared by sol gel method was also used for the removal of by-producted $NO_x$ in $NH_3$ oxidation reaction. When $TiO_2$ was used as a photocatalyst, the conversion to $N_2$ in ammonia decomposition reached above 90% until 200hr (The air flow rate of 4L/min with the ammonia concentration up to 25ppm.). However, considerable amounts of NO and $NO_2$ were formed as a result of $NH_3$ oxidation (as a by-product). Therefore, we added Vanadia impregnated $TiO_2$(P-25) catalyst for the removal of $NO_x$ at the end of reaction trail. The results of a pilot-scale operation were successful to achieve the simultaneous removal of $NH_3\;and\;NO_x$ about 81 and 87%, respectively.

A Study on the Activity of Metal Filter Pt Coated on Soot Oxidation (백금 코팅 메탈필터소재의 Soot 산화반응에 대한 활성 연구)

  • Kim, Sung Su;Lee, Sang Moon;Jang, Du Hun;Bae, Se Hyun;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.400-404
    • /
    • 2011
  • The activity and stability of the metal filter material Pt coated on NOx and soot oxidation were examined. The catalytic reaction test for NOx and soot were also performed independently and simultaneously. As a result, it showed the NO to $NO_2$ shift reaction with 20% conversion, NOx decomposition (about 10%) and perfect soot oxidation on the material Pt coated proceeded. Onset temperature of soot oxidation shift to lower temperature (about $30^{\circ}C$) by generated $NO_2$. The material also was less affected by thermal shock than $Pt/Al_2O_3$ or $Pt/TiO_3$ catalysts due to its stability of surface structure.

Simultaneous Removal of Mercury and NO by Metal Chloride-loaded V2O5-WO3/TiO2-based SCR catalysts (금속염화물이 담지된 V2O5-WO3/TiO2 계 SCR 촉매에 의한 수은 및 NO 동시 제거)

  • Ham, Sung-Won
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.172-180
    • /
    • 2017
  • Thermodynamic evaluation indicates that nearly 100% conversion of elemental mercury to oxidized mercury can be attained by HCl of several tens of ppm level at the temperature window of SCR reaction. Cu-, Fe-, Mn-chloride loaded $V_2O_5-WO_3/TiO_2$ catalysts revealed good NO removal activity at the operating temperature window of SCR process. The catalysts with high desorption temperature indicating adsorption strength of $NH_3$ revealed higher NO removal activity. The HCl fed to the reaction gases promoted the oxidation of mercury. However, the activity for the oxidation of elemental mercury to oxidized mercury by HCl was suppressed by $NH_3$ inhibiting the adsorption of HCl to catalyst surface under SCR reaction condition containing $NH_3$ for NO removal. Metal chloride loaded $V_2O_5-WO_3/TiO_2$ catalysts showed much higher activity for mercury oxidation than $V_2O_5-WO_3/TiO_2$ catalyst without metal chloride under SCR reaction condition. This is primarily attributed to the participation of chloride in metal chloride on the catalyst surface promoting the oxidation of elemental mercury.

Experimental Investigation on the Reduction Characteristics of Nitric Dioxide(NO2) over Platinum-based Oxidation Catalyst (백금산화촉매를 통한 이산화질소(NO2)의 저감 특성에 관한 실험적 연구)

  • Kim, Young-Deuk;Cho, Ja-Yun;Lee, Jung-Gil;Kim, Woo-Seung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.142-149
    • /
    • 2012
  • The reduction characteristics of $NO_2$ to NO are experimentally studied over a platinum-based catalyst, especially at lower temperatures below about $200^{\circ}C$. In the present work, two types of steady-state experiments, engine bench and synthetic gas bench tests, are carried out in sequence. Steady-state engine bench tests with the DOC mounted on a light duty 4-cylinder 2.0 liter turbocharged diesel engine are performed and prove that CO plays a major role in $NO_2$ abatement at temperatures below the light-off temperature of CO oxidation, about $200^{\circ}C$. Synthetic gas bench tests are then performed using synthetic gas mixtures with CO, $C_3H_6$, NO, $NO_2$, $O_2$, $H_2O$ and $N_2$ in the $140{\sim}450^{\circ}C$ T-range and show that both CO and $C_3H_6$ are capable of reducing $NO_2$. It is noted that the reaction rate of $NO_2$ with $C_3H_6$ is much higher than that with CO. At temperatures below about $200^{\circ}C$, the reduction of $NO_2$ to NO is promoted with increasing CO concentration and $NO_2$/$NO_X$ ratio and with decreasing $O_2$ concentration, as well as with the presence of $H_2O$.

Action of Ascorbic Acid and Indoleacetic Acid on the Oxidation of Succinate and Coupled Phosphorylation in Chlorella Mitochondria (Chlorella Mitochondria의 Oxidative Phosphorylation에 대한 Ascorbic Acid 및 IAA의 작용성에 관하여)

  • Lee, Yung-Nok;Chin, Pyung
    • Korean Journal of Microbiology
    • /
    • v.2 no.1
    • /
    • pp.12-16
    • /
    • 1964
  • Lee, Yung Nok and Chin, Pyung (Dept. of Biology, Korea University, Seoul, Korea) : Action of ascorbic acid indoleacetic acid on the oxidation of succinate and coupled phosphorylation in Chlorella mitochondria. Kor. Jour. Microbiol., Vol.2, No.1, p12-16 (1964) Mitochondria were isolated from Chlorella ellipsoidea and the action of ascorbic acid and indoleacetic acid on the succinate oxidation and coupled phosphorylation in mitochondria suspension were examined. Oxidation of succinate used as substrate, and phosphorylation coupled to oxidation were strikingly enhanced by the addition of ascorbic acid, while in case of indoleacetic acid it were a little. In a view of phosphorylative efficiency, P/O ratio resulting from the addition of ascorbic acid was decreased and it may be considered as the result of a partial oxidation of ascorbate in mitochondria.

  • PDF

Photocatalytic oxidation reaction in removal of NH4-N by using TiO2 (TiO2를 이용한 암모니아성 질소 제거에 관한 광촉매 산화반응)

  • 박상원;김정배
    • Journal of Environmental Science International
    • /
    • v.12 no.10
    • /
    • pp.1071-1077
    • /
    • 2003
  • The aim of this study is, firstly, to find out what kinds of inorganic species are produced in the photocatalytic oxidation of ammonium-nitrogen containing water and, secondly, to seek the influence of anion for the photocatalytic oxidation of ammonium contained compounds. The photoenergy above 3 eV(λ <415 nm) was effectively absorbed by TiO$_2$ and TiO$_2$/polymer was used to be oxidized NH$_4$-N in wastewater to NO$_3$-N. Existing the anion as Cl$\^$-/, the rate of photocatalytic oxidation decreased regardless of other condition. This result showed that the chloride ions reduced the rate of oxidation by scavenging oxidizing radical species as OH$\^$-/ and OCl$\^$-/. Some of the added ion might have blocked the active sites of the catalyst surface, thus deactivated the catalyst.

A Study on the Characteristics of CO Oxidation by NO Poisoning in Pt/TiO2 Catalyst (Pt/TiO2 촉매에서의 NO 피독에 의한 CO 산화반응특성 연구)

  • Kim, Min Su;Kim, Se Won;Hong, Sung Chang
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.296-301
    • /
    • 2019
  • This study was conducted to investigate the characteristics of CO oxidation by NO poisoning in Pt/TiO2 catalyst prepared by wet impregnation method and calcined at 400 ℃. In order to confirm the NO poisoning effect of the Pt/TiO2 catalyst, the change of reaction activity was observed when NO was injected during the CO+O2 reaction where it was ascertained that the CO conversion rate rapidly decreased below 200 ℃. Also, CO conversion was not observed below 125 ℃. Recovery of initial CO conversion was not verified even if NO injection was blocked at 125 ℃. Accordingly, various analyses were performed according to NO injection. First, as a result of the TPD analysis, it was confirmed that NO pre-adsorption in catalyst inhibited CO adsorption and conversion desorption from adsorbed CO to CO2. When NO was pre-adsorbed, it was confirmed through H2-TPR analysis that the oxygen mobility of the catalyst was reduced. In addition, it was validated through FT-IR analysis that the redox cycle (Pt2+→Pt0→Pt2+) of the catalyst was inhibited. Therefore, the presence of NO in the Pt/TiO2 catalyst was considered to be a poisoning factor in the CO oxidation reaction, and it was determined that the oxygen mobility of the catalyst is required to prevent NO poisoning.

The Analysis of Voltage Waveform and Oxidation Growth of Conductor with Series Arc (직렬 아크에 따른 도체의 산화물 증식 및 전압 파형 분석)

  • Choi, Chung-Seog;Kim, Hyang-Kon;Kim, Dong-Ook;Kim, Dong-Woo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.3
    • /
    • pp.146-152
    • /
    • 2006
  • In order to analyze the characteristics of series arcs that could happen in poor connections of electrical facilities, we made an apparatus which is similar to actual situation. series arcs are generated between copper and copper, copper and bronze, copper and brass, bronze and bronze, and then oxidation growth and voltage waveform were measured. A very small vibration with constant movement is needed to grow oxidation initially, whereas oxidation growth proceeded without a vibration after a certain amount of time. At first, blue white flame was generated initially between copper and copper, and then yellow flame was generated. In case of contact between copper and copper, the length of oxidation growth was about 7.1[mm] in 90[min]. In case of contact between copper and brass, the length of oxidation growth was about 4.3[mm] in 90[min], When bronze is contacted with copper, the lengths of oxidation growth were about 1.4[mm] in 20[min] and 2.7[mm] in 40[min] respectively, and no more oxidation growth was shown after that. In case of contact between brass and brass, the length of oxidation growth was about 1.2[mm] in 90[min], so it was the smallest compared to other cases. When copper is contacted with copper, the current through the load was about 1.6[A] and the power dissipation increased from 19[W] to 31[W]. In case of oxidation growth between copper and brass, the voltage changed from 8.4[V] to 11[V]. However, the voltage drop and the power dissipation between copper and brass were small compared to oxidation growth between copper and copper. When series arcs were generated between bronze and copper, a peak was shown at the beginning of voltage increase, and 40[min] later, oxidation material was not grown any longer. When oxidation growth occurred, voltage waveform showed irregular waveforms with tiny ripples.