• 제목/요약/키워드: NMR studies

검색결과 673건 처리시간 0.019초

High-pressure NMR application for α-synuclein

  • Kim, Jin Hae
    • 한국자기공명학회논문지
    • /
    • 제26권2호
    • /
    • pp.21-23
    • /
    • 2022
  • High-pressure (HP) NMR is a powerful method to elucidate various structural features of amyloidogenic proteins. Following the previous mini-review recapitulating the HP-NMR application for amyloid-β peptides of the last issue [J. H. Kim, J. Kor. Mag. Reson. Soc. 26, 17 (2022)], the recent advancements in the HP NMR application for α-synuclein (α-Syn) are briefly summarized and discussed here. Although α-Syn is a well-known intrinsically disordered protein (IDP), several studies have shown that it can also exhibit heterogeneous yet partially folded conformations, which may correlate with its amyloid-forming propensity. HP NMR has been a valuable tool for investigating the dynamic and transient structural features of α-Syn and has provided unique insights to appreciate its aggregation-prone characters.

Solution NMR spectroscopy for investigation of liquid-liquid phase separation

  • Saio, Tomohide;Okumura, Masaki;Lee, Young-Ho
    • 한국자기공명학회논문지
    • /
    • 제24권2호
    • /
    • pp.47-52
    • /
    • 2020
  • Liquid-liquid phase separation (LLPS) of biomolecules, a newly-found phase behavior of molecules in the liquid phase, has shown to its relationship to various biological function and misfolding diseases. Extensive studies have increasingly revealed a general mechanism of LLPS and characterized the liquid droplet; ho wever, intermolecular interactions of proteins and structural states of LLPS-inducing proteins inside of the droplet remain largely unknown. Solution NMR spectroscopy has emerged as a powerful approach as it provides invaluable information on protein intermolecular interactions and structures at the atomic and residue level. We herein comprehensively address useful techniques of solution NMR including the effect of paramagnetic relaxation enhancement for the study on the LLPS and droplet based on recent studies.

Effect of salt on membrane protein Caveolin3 proved with NMR spectroscopy

  • Byoungduck Park;Ji-Hun Kim
    • 한국자기공명학회논문지
    • /
    • 제28권3호
    • /
    • pp.10-14
    • /
    • 2024
  • Caveolin3, mainly expressed in muscle tissue types, is a structural scaffolding protein of caveolae which are microdomains of plasma membrane. To elucidate the relationship between structure and function, several studies on the structure of caveolins using NMR have been reported. Because the ionic strength can affect the electrostatic-driven association of proteins with ligand and protein structure, the effect of salt in the structural studies has to be considered. In this work, we observed that the chemical shifts of Cav3 in the LPPG detergent change depending on salt concentration. The R2 values also show salt concentration-dependent changes. Specifically, in the N-terminal region where conformational changes and various interactions occur, the R2 values decrease. Interestingly, the R2 values of residues expected to be located in the LPPG detergent are also influenced by the salt concentration. This work suggests that the concentration of NaCl can affect interpretation of NMR data from membrane proteins.

NMR and Molecular Modeling Studies on the Structures of AA Mismatched DNA Oligomers

  • Lee, Chulhyun;Chaejoon Cheong;Lee, Jo-Woong
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1998년도 학술발표회
    • /
    • pp.21-21
    • /
    • 1998
  • Since the repair efficiency of non-Watson-Crick base pairs in DNA is affected by the mismatched base-pairs and their neighbor sequences, the structural studies are necessary for the elucidation of the repair efficiency. NMR and molecular modeling studies on the DNA duplexes including AA mismatches were performed.(omitted)

  • PDF

Optimized Methods for purification and NMR measurement of antibacterial peptide, bovine lactophoricin

  • Kim, Ji-Sun;Park, Tae-Joon;Kim, Yong-Ae
    • 한국자기공명학회논문지
    • /
    • 제13권2호
    • /
    • pp.96-107
    • /
    • 2009
  • Lactophoricin (LPcin-I) is a cationic amphipathic peptide with 23-mer peptide, and corresponds to the carboxy terminal 113-135 region of Component-3 of proteose-peptone. LPcin-I is a good candidate as a peptide antibiotic, because it has an antibacterial activity, but no hemolytic activity. On the other hand, its shorter analog (LPcin-II), which corresponds to the 119-135 region of PP3, has no antibacterial activity. In order to understand the structure-activity relationship under the membrane environments, we succeed to produce large amounts of LPcin-I and LPcin-II peptides. Peptides were over expressed in the form of fusion protein in Escherichia coli, and purified with several chromatography techniques. In this paper, we introduce the optimizing processes of purification and NMR measurement.

Vanadate와 N-Benzyliminodiacetate 리간드의 상호작용에 대한 $^{51}V$ 핵자기공명분광법과 순환전압 - 전류법 연구 ($^{51}V$ NMR and Cyclic Voltammetry Studies on the Interaction of Vanadate and N-Benzyliminodiacetate in Aqueous Solution)

  • 박철진;박삼수;이만호
    • 분석과학
    • /
    • 제12권3호
    • /
    • pp.184-189
    • /
    • 1999
  • 수용액에서 vanadate와 N-benzyliminodiacetate (Bz-IDA) 리간드의 상호작용을 $^{51}V$ 핵자기공명분광법과 순환전압-전류법을 이용하여 조사하였다. $^{51}V$ 핵자기공명분광법 결과 바나듐(V)-Bz-IDA착물생성에 의한 두 개의 특정 피크(-515.5 ppm 및 -500.1 ppm)를 관찰할 수 있었다. 순환전압-전류법을 이용하여 얻어진 결과 바나듐(V)-Bz-IDA착물의 산화-환원파의 전위값은 각각 -0.05 V 및 -0.13 V에서 관찰하였다. 이로써 산화-환원반응은 가역적 일전자반응으로 추정되었다.

  • PDF

NMR Studies of Ni-binding Luteinizing Hormone Releasing Hormone

  • Kim, Jin;Won, Ho-Shik
    • 한국자기공명학회논문지
    • /
    • 제13권2호
    • /
    • pp.143-153
    • /
    • 2009
  • Luteinizing Hormone Releasing Hormone (LHRH) is composed of 10 amino acids, and is best known as a neurotransmitter. Because of the 80% homology in animals, much more concerns have focused on the substances that have similar functions or can control LHRH. Ni, Cu-LHRH complexes were synthesized. The degree of complexation was monitored by $^1H,\;^{13}C$-NMR chemical shifts, and final products were identified by ESI-Mass spectrum. Solution-state structure determination of Ni-LHRH complex was accomplished by using NMR results and NMR-based distance geometry (DG). Interproton distances from nuclear Overhauser effect spectroscopy (NOESY) were utilized for the molecular structure determination. Results were compared with previous structures obtained from energy minimization and other spectroscopic methods. Structure obtained in this study has a cyclic conformation which is similar to that of energy minimized, and exhibits a specific a-helical turn with residue numbers (2~7) out of 10 amino acids. Comparison of chemical shifts and EPR studies of Ni, Cu-LHRH complexes exhibit that Ni-LHRH complex has same binding sites with the 4-coordination mode as in Zn-LHRH complex.

Mini-review on fabrication of nitrogen vacancy center in diamond and its application to NMR

  • Oh, Sangwon
    • 한국자기공명학회논문지
    • /
    • 제23권3호
    • /
    • pp.73-80
    • /
    • 2019
  • Nitrogen-vacancy (NV) is one of the most popular solid-state spin systems for quantum sensing. NV has been used for vector magnetometry with nanometer spatial resolution and sensors for nuclear magnetic resonance (NMR) in samples with small volume, less than 10 pL. Various studies are in progress to make NV a complementary sensor for current NMR technique. Fabricating and improving diamond itself are one of the research topics. This mini-review contains recent develops in diamond fabrication and treatment for higher NV yield. Additionally, we briefly introduce the development status of NV in NMR.

High-pressure NMR application for amyloid-beta peptides

  • Kim, Jin Hae
    • 한국자기공명학회논문지
    • /
    • 제26권1호
    • /
    • pp.17-20
    • /
    • 2022
  • High-pressure (HP) NMR is a versatile tool to investigate diverse features of proteins. This technique has been particularly powerful to elucidate structural dynamics that only populates sufficiently in a pressurized condition. Amyloidogenic proteins, which are prone to aggregate and form amyloid fibrils, often maintains highly dynamic states in its native or aggregation-prone states, and HP NMR contributed much to advance our understandings of the dynamic behaviors of amyloidogenic proteins and the molecular mechanisms of their aggregation. In this mini review, we therefore summarize recent HP NMR studies on amyloid-beta (Aβ), the representative amyloidogenic intrinsically disordered protein (IDP).