• Title/Summary/Keyword: NMR structure

Search Result 1,357, Processing Time 0.026 seconds

Characterization and Synthesis of Titanium (IV) Isopropoxide Derivatives (Titanium(IV) isoproxide 유도체의 합성 및 특성연구)

  • Jung, Mie-Won
    • Analytical Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.509-514
    • /
    • 1999
  • The systematic modification of titanium(IV) isopropoxide with acetic acid as a organic additive was done and identifided by FT-IR, $^1H$, $^{13}C$ NMR and UV-Vis spectroscopy. The structure was cbanged after hydrolysis-condensation reaction and drying process. The hydrolysis-condensation rates of modified Ti alkoxide with acetic acid were investigated by $^1H$ NMR spectroscopy. This modified Ti(IV) alkoxide was less reactive toward hydrolysis-condensation reaction than $Ti(OPr^i)_4$, which can be attributed to the stable ligand structure between Ti alkoxide and ligand. The structural change on obtained from gel powders with heat treatment was also observed by FT-IR spectroscopy.

  • PDF

Genome Scale Protein Secondary Structure Prediction Using a Data Distribution on a Grid Computing

  • Cho, Min-Kyu;Lee, Soojin;Jung, Jin-Won;Kim, Jai-Hoon;Lee, Weontae
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.65-65
    • /
    • 2003
  • After many genome projects, algorithms and software to process explosively growing biological information have been developed. To process huge amount of biological information, high performance computing equipments are essential. If we use the remote resources such as computing power, storages etc., through a Grid to share the resources in the Internet environment, we will be able to obtain great efficiency to process data at a low cost. Here we present the performance improvement of the protein secondary structure prediction (PSIPred) by using the Grid platform, distributing protein sequence data on the Grid where each computer node analyzes its own part of protein sequence data to speed up the structure prediction. On the Grid, genome scale secondary structure prediction for Mycoplasma genitalium, Escherichia coli, Helicobacter pylori, Saccharomyces cerevisiae and Caenorhabditis slogans were performed and analyzed by a statistical way to show the protein structural deviation and comparison between the genomes. Experimental results show that the Grid is a viable platform to speed up the protein structure prediction and from the predicted structures.

  • PDF

NMR methods in fragment based drug discovery

  • Lim, Jongsoo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.3
    • /
    • pp.132-136
    • /
    • 2015
  • Nuclear magnetic resonance (NMR) spectroscopy, owing to its ability to provide atomic level information on molecular structure, dynamics and interaction, has become one of the most powerful methods in early drug discovery where hit finding and hit-to-lead generation are mainly pursued. In recent years, drug discovery programs originating from the fragment-based drug discovery (FBDD) strategies have been widely incorporated into academia and industry in which a wide variety of NMR methods become an indispensable arsenal to elucidate the binding of small molecules onto bimolecular targets. In this review, I briefly describe FBDD and introduce NMR methods mainly used in FBDD campaigns of my company. In addition, quality control of fragment library and practical NMR methods in industrial aspect are discussed shortly.

Solid-state Chracterization of the HIV Protease Inhibitor

  • Kim, Yong-Ae;Kim, Ae-Ri
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.12
    • /
    • pp.1729-1732
    • /
    • 2002
  • The LB71350,(3S, 4R)-Epoxy-(5S)-[[N-(1-methylethoxy)carbonyl]-3-(methylsulfonyl)-L-valinyl]amino]-N-[2-methyl-(1R)-[(phenyl)carbonylpropyl-6-phenylhexanamide, is a novel HIV protease inhibitor. Its equilibrium solubility at room temperature was less than $40{\mu}g/mL.$ It was speculated that the low aqueous solubility might be due to the high crystalline lattice energy resulting from intermolecular hydrogen bonds. The present study was carried out to learn the solid-state characteristics of LB71350 using analytical methods such as NMR, FT-IR and XRD. $^{13}C$ Solid-state NMR, solution NMR, and FT-IR spectra of the various solid forms of LB71350 were used to identify the conformation and structure of the solid forms. The chemical shifts of $^{13}C$ solid-state NMR spectra suggest that the crystalline form might have 3 intermolecular hydrogen bondings between monomers.

Solid-state NMR Study on Membrane Protein Structure in Biological Condition

  • Kang, Su-Jin;Lee, Bong-Jin
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.16 no.2
    • /
    • pp.103-110
    • /
    • 2012
  • Membrane proteins play a essential role in the biological systems and it is not easy to handle a membrane protein for its structural study. Solid-state NMR (ssNMR) can be a good tool to investigate the structures and dynamics of membrane proteins. In ssNMR, Magic Angle Spinning (MAS) and Cross Polarization (CP) can be utilized to reduce the line-broadening, leading to high resolution and sensitivity in the spectrum. ssNMR, if combined with other spectroscopic methods, can provide us a enough knowledge on structures and dynamics of membrane proteins in biological condition.

The Effect of Iron Content on the Atomic Structure of Alkali Silicate Glasses using Solid-state NMR Spectroscopy (비정질 알칼리 규산염 원자구조의 철 함량 효과에 관한 고체 NMR 분광학 연구)

  • Kim, Hyo-Im;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.301-312
    • /
    • 2011
  • The study on the atomic structure of iron-bearing silicate glasses has significant geological implications for both diverse igneous processes on Earth surface and ultra-low velocity zones at the core-mantle boundary. Here, we report experimental results on the effect of iron content on the atomic structure in iron-bearing alkali silicate glasses ($Na_2O-Fe_2O_3-SiO_2$ glasses, up to 16.07 wt% $Fe_2O_3$) using $^{29}Si$ and $^{17}O$ solid-state NMR spectroscopy. $^{29}Si$ spin-lattice ($T_1$) relaxation time for the glasses decreases with increasing iron content due to an enhanced interaction between nuclear spin and unpaired electron in iron. $^{29}Si$ MAS NMR spectra for the glasses show a decrease in signal intensity and an increase in peak width with increasing iron content. However, the heterogeneous peak broa-dening in $^{29}Si$ MAS NMR spectra suggests the heterogeneous distribution of $Q^n$ species around iron in iron-bearing silicate glasses. While nonbridging oxygen ($Na-O-Si$) and bridging oxygen (Si-O-Si) peaks are partially resolved in $^{17}O$ MAS NMR spectrum for iron-free silicate glass, it is difficult to distinguish the oxygen clusters in iron-bearing silicate glass. The Lorentzian peak shape for $^{29}Si$ and $^{17}O$ MAS NMR spectra may reflect life-time broadening due to spin-electron interaction. These results demonstrate that solid-state NMR can be an effective probe of the detailed structure in iron-bearing silicate glasses.

NMR Studies on the Structure of Human Annexin I

  • Han, Hee-Yong;Bang, Keun-Su;Na, Doe-Sun;Lee, Bong-Jin
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.182-182
    • /
    • 1996
  • Annexin I is a member of the annexin family of calcium dependent phospholipid binding proteins and has anti-inflammatory activity by inhibiting phospholipase A$_2$ (PLA$_2$). Recent X-ray crystallographic study of annexin I identified six Ca$\^$2+/ binding bites, which was different types (type II, III) from the well-known EF-hand motif (type I). In this work, the structure of annexin I was studied at atomic level by using $^1$H, $\^$15/N and $\^$l3/C NMR(nuclear magnetic resonance) spectroscopy, and the effect of Ca$\^$2+/ binding on the structure of annexin I was studied, and compared with that of Mg$\^$2+/ binding, When Ca$\^$2+/ was added to annexin I, NMR peak change was occured in high- and low-field regions of $^1$H-NMR spectra. NMR peak change by Ca$\^$2+/ binding was different from that by Mg$\^$2+/ binding. Because annexin I is a larger protein with 35 kDa molecular weight, site-specific (amide-$\^$15/N, carbonyl-$\^$l3/C) labeling technique was also used. We were able to detect methionine, tyrosine and phenylalanine peaks respectively in $\^$13/C-NMR spectra, and each residue was able to be assigned by the method of doubly labeling annexin I with [$\^$13/C] carbonyl-amino acid and [$\^$15/N] amide-amino acid. In $\^$l3/C-NMR spectra of [$\^$13/C] carbonyl-Met labeled annexin I, we observed that methionine residues spatially located near Ca$\^$2+/ binding Sites Were Significantly effected by Ca$\^$2+/ binding. From UV spectroscopic data on the effect of Ca$\^$2+/ binding, we knew that Ca$\^$2+/ binding sites of annexin I have cooperativity in Ca$\^$2+/ binding. The interaction of annexin I with PLA$_2$ also could be detected by using heteronuclear NMR spctroscopy. Consequently, we expect that the anti-inflammatory action mechanism of annexin I may be a specific protein-protein interaction. The residues involved in the interaction with PLA$_2$ can be identified as active site by assigning NMR peaks effected by PLA$_2$ binding.

  • PDF

Systematic Assessment of the Effects of an All-Atom Force Field and the Implicit Solvent Model on the Refinement of NMR Structures with Subsets of Distance Restraints

  • Jee, Jun-Goo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.1944-1950
    • /
    • 2014
  • Employment of a time consuming, sophisticated calculation using the all-atom force field and generalized-Born implicit solvent model (GBIS) for refinement of NMR structures has become practical through advances in computational methods and capacities. GBIS refinement improves the qualities of the resulting NMR structures with reduced computational times. However, the contribution of GBIS to NMR structures has not been sufficiently studied in a quantitative way. In this paper, we report the effects of GBIS on the refined NMR structures of ubiquitin (UBQ) and GB1 with subsets of distance restraints derived from experimental data. Random omission prepared a series of distance restraints 0.05, 0.1, 0.3, 0.5, and 0.7 times smaller. For each number, we produced five different restraints for statistical analysis. We then recalculated the NMR structures using CYANA software, followed by GBIS refinements using the AMBER package. GBIS improved both the precision and accuracy of all the structures, but to varied levels. The degrees of improvement were significant when the input restraints were insufficient. In particular, GBIS enabled GB1 to form an accurate structure even with distance restraints of 5%, revealing that the root-mean-square deviation was less than 1 ${\AA}$ from the X-ray backbone structure. We also showed that the efficiency of searching the conformational space was more important for finding accurate structures with the calculation of UBQ with 5% distance restraints than the number of conformations generated. Our data will provide a meaningful guideline to judge and compare the structural improvements by GBIS.

Determination of Stereochemical Structure of a Grandidentatin Isomer from Populus alba × glandulosa Bark (현사시나무 수피에서 분리한 Grandidentatin Isomer의 입체구조결정)

  • Kwon, Dong-Joo;Kim, Hyun-Seok;Lee, Phil-Ho;Bae, Young-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.114-120
    • /
    • 2009
  • The bark of Populus alba ${\times}$ glandulosa was collected, air-dried and extracted with 70% aqueous acetone. Then it was successively partitioned with n-hexane, $CH_2Cl_2$, EtOAc and $H_2O$. Repeated Sephadex LH-20 column chromatography and preparative TLC on the EtOAc soluble fraction gave a grandidentatin isomer. The structure was elucidated as grandidentatin A (cis-2-hydroxycyclohexyl 6-O-p-coumaroyl-${\beta}$-D-glucopyranoside) on the basis of spectroscopic evidences such as $^1H$-NMR, $^{13}C$-NMR, 2D-NMR and MALDI TOF-MS spectrum followed by acid hydrolysis. Grandidentatin A was identified here for the first time in Populus alba ${\times}$ glandulosa bark, and to the bset of our knowledge it has not been reported in any other literature.

NMR structural studies on Human CD99 Type I

  • Kim, Hai-Young;Kim, Young-Mee;Joon Shin;Shin, Young-Kee;Park, Seong-Hoe;Lee, Weontae
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.69-69
    • /
    • 2003
  • Human CD99 is a ubiquitous 32-kDa transmembrane protein encoded by the mic2 gene. The major cellular functions of CD99 protein are related to homotypic cell adhension, apoptosis, vesicular protein transport, and differentiation of thymocytes or T cells. Recently it has been reported that expression of a splice variant of CD99 transmembrane protein (Type I and Type II) increases invasive ability of human breast cancer cells. To understand structural basis for cellular functions of CD99 (Type I), we have initiated studies on hCD99$^{TMcytoI}$ and hCD99$^{cytoI}$ using circular dichroism (CD) and multi-dimensional NMR spectroscopy. CD spectrum of hCD99$^{TMcytoI}$ in the presence of 200mM DPC and CHAPS displayed an existence $\alpha$-helical conformation. The solution structure of hCD99$^{cytoI}$ determined by NMR is composed of one N-terminal $\alpha$-helix, $\alpha$A, two C-terminal short $\alpha$-helix segments, $\alpha$B and $\alpha$C. While $\alpha$A and $\alpha$B are connected by the long flexible loop, $\alpha$B and $\alpha$C connected by type III$\beta$-turn. Although it has been rarely figured out the correlation between structure and functional mechanism of hCD99$^{TMcytoI}$ and hCD99$^{cytoI}$, there is possibility of dimerization or oligomerization. In addition, the feasible mechanism of hCD99$^{cytoI}$ is that it could have intramolecular interaction between the N- and C- terminal domain through large flexible AB loop.

  • PDF