• 제목/요약/키워드: NMR reference

검색결과 42건 처리시간 0.023초

The ability of absorption and physicochemical properties of chitosan prepared from fungi

  • Kim, Bong-Seob;Lee, Kook-Eui;Suh, Myung-Gyo;Roh, Jong-Su;Lee, Yong-Hee;Suh, Jung-Ho
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2003년도 Challenges and Achievements in Environmental Health
    • /
    • pp.116-122
    • /
    • 2003
  • The physicochemical properties of fungal chitosan at 95$^{\circ}C$ and 40$^{\circ}C$ acid treatment was as follows respectively. The nitrogen content was 6.71%, 6.91%, the viscosity 2.23cps, 2.21cps, the acetylation 12.0%, 12.7% and the molecular weight 3.12${\times}$10$\^$5/ Dalton, 3.01${\times}$10$\^$5/ Dalton. The absorbency band of reference, FCs-40 and FCs-95 in I.R. spectra was almost in accord with one another. In solid state NMR spectra, methyl group(-CH$_3$) was observed lightly. That means which deacetylation was well occurred. Carbonyl group(C=O) was not observed. C$_1$ to C$\_$6/ in solid state NMR was well observed seperately enough.

  • PDF

Meroparamycin Production by Newly Isolated Streptomyces sp. Strain MAR01: Taxonomy, Fermentation, Purification and Structural Elucidation

  • El-Naggar Moustafa Y.;El-Assar Samy A.;Abdul-Gawad Sahar M.
    • Journal of Microbiology
    • /
    • 제44권4호
    • /
    • pp.432-438
    • /
    • 2006
  • Twelve actinomycete strains were isolated from Egyptian soil. The isolated actinomycete strains were then screened with regard to their potential to generate antibiotics. The most potent of the producer strains was selected and identified. The cultural and physiological characteristics of the strain identified. the strain as a member of the genus Streptomyces. The nucleotide sequence of the 16S rRNA gene (1.5kb) of the most potent strain evidenced a 99% similarity with Streptomyces spp. and S. aureofaciens 16S rRNA genes, and the isolated strain was ultimately identified as Streptomyces sp. MAR01. The extraction of the fermentation broth of this strain resulted in the isolation of one major compound, which was active in vitro against gram-positive, gram-negative representatives and Candida albicans. The chemical structure of this bioactive compound was elucidated based on the spectroscopic data obtained from the application of MS, IR, UV, $^1H$ NMR, $^{13}C$ NMR, and elemental analysis techniques. Via comparison to the reference data in the relevant literature and in the database search, this antibiotic, which had a molecular formula of $C_{19}H_{29}NO_2$ and a molecular weight of 303.44, was determined to differ from those produced by this genus as well as the available known antibiotics. Therefore, this antibiotic was designated Meroparamycin.

Optimization of the Spreadable Modified Butter Manufacturing by Response Surface Methodology

  • Suh, Mun Hui;Lee, Keon Bong;Baick, Seung Chun
    • 한국축산식품학회지
    • /
    • 제32권6호
    • /
    • pp.783-788
    • /
    • 2012
  • The aim of this study was to optimize the manufacturing condition of spreadable modified butter by RSM. Based on the central composite design, the degree of optimization was expressed as a SFC as a dependent variable (Y, %) determined by NMR with 23 experimental groups. Three independent variables were the contents of butter ($X_1$, 35-75%), the contents of grape seed oil ($X_2$, 15-35%), and the contents of hydrogenated soybean oil ($X_3$, 0-4%). As the result, SFC at $10^{\circ}C$ was ranged from 32.37 to 42.76%. In addition, the regression coefficients were calculated for SFC at $10^{\circ}C$ by RSREG. The regression model equation for the SFC was $Y=39.18-0.04X_1X_3$. Consequently, the optimal contents for manufacturing spreadable modified butter were determined as 55.18% for butter, 40.78% for grape seed oil, and 4.08% for hydrogenated soybean oil, respectively. The predicted response value for SFC at $10^{\circ}C$ was 30.20%, comparable to the actual experimental SFC value as 29.85%. Finally hardness and spreadability in reference butter and spreadable modified butter produced under the optimal conditions was measured. The hardness in spreadable modified butter was 31.80 N as compared to 69.92 N in reference butter. The spreadability in spreadable modified butter was 5.6 point as compared to reference butter. This difference may be due to the contents of solid fat by butter and hydrogenated soybean oil. This study showed that the SFC value at $10^{\circ}C$ could be a suitable indicator for the manufacturing spreadable modified butter to predict important attributes such as mouth feel, hardness and spreadability.

Efficient Ultrasound Enhance Novel Series of 2-((E)-2,3-Dihydro-2-(4-(phenylthio)phenyl)benzo[b][1,4]thiazepin-4-yl)phenol as an Antimicrobial Agent

  • Chate, Asha V.;Joshi, Ratnadeep S.;Badadhe, Pravin V.;Dabhade, Sanjay K.;Gill, Charansingh H.
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권11호
    • /
    • pp.3887-3892
    • /
    • 2011
  • An efficient synthesis of 1,5-Benzothiazepines via Michael addition of corresponding (E)-1-(2-hydroxyphenyl)-3-(4-(phenylthio)phenyl)prop-2-en-1-one is described under ultrasound irradiation. A series of novel 2-((E)-2,3-dihydro-2-(4-(phenylthio)phenyl)benzo[b][1,4]thiazepin-4-yl)phenol derivatives was confirmed on the basis of $^1H$ NMR, Mass, IR spectral data and Elemental analysis. The synthesized compounds were evaluated for their antimicrobial activities. Most of the compounds were found to be comparable potent than the reference standard drugs. Utilization of ultrasound irradiation, simple reaction conditions, isolation, and purification makes this manipulation very interesting from an economic and environmental perspective.

Use of Nuclear Magnetic Resonance Spectroscopy in Analysis of Fennel Essential Oil

  • AbouZid, Sameh
    • Natural Product Sciences
    • /
    • 제22권1호
    • /
    • pp.30-34
    • /
    • 2016
  • A simple and rapid method based on proton nuclear magnetic resonance spectroscopy was developed for determination of trans-anethole content in fennel essential oil. Spectra of pure trans-anethole, of the pure essential oil of fennel, and of the pure oil of fennel with thymol internal standard were recorded. The signal of $H-1^/$ was used for quantification of trans-anethole. This proton signal is well separated in the proton magnetic resonance spectrum of the compound. No reference compound is needed and cheap internal standard was used. The results obtained from spectroscopic analysis were compared with those obtained by gas chromatography. Additionally, the developed method was used for determination of the type of vegetable oil used as a carrier in commercial products, which cannot be quantified as such by gas chromatography. This study demonstrates the application of proton nuclear magnetic resonance spectroscopy as a quality control method for estimation of essential oil components.

Calculation of NMR Chemical Shift for 5d$^n$ Systems (Ⅰ). Application of the Expansion Method for Spherical Harmonics for Computation of Overlap and Dipole Moment Matrix Elements

  • Ahn, Sang-Woon;Oh, Se-Woung;Park, Eui-Suh
    • Bulletin of the Korean Chemical Society
    • /
    • 제6권1호
    • /
    • pp.3-7
    • /
    • 1985
  • The general formulas for SCF atomic orbitals |5s > and |6p > have been derived separately by expressing the spherical harmonics part in terms of the coordinate($r_1,\;$r_2$) of the reference point, and by translating the exponential part, $r^4\;exp\;(-{\beta}r)$), in terms of $r_1,\;and\;r_2$ and the modified Bessel functions. Master formulas for overlap and dipole moment matrix elements are derived. The computed values of overlap and dipole moment matrix elements for hypothetical NO molecule are exactly in agreement with those for the previous methods.

$^1H$ NMR Studies of the Interaction between Cytochrome c3 and ferredoxin I from D. Vularis Miyazaki F

  • 박장수;정인철;김안드레;박남규;김동구;서홍석;강신원
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권5호
    • /
    • pp.543-546
    • /
    • 1999
  • Heme assignment of the 1HNMR spectrum of cytochrome c3 of D. vulgaris Miyazaki F was established [Reference: 12, 13]. The major reduction of the heme turned out to take place in the other of heme 4, 1, 2 and 3 (in the sequential numbering). The Hemes with the smallest and greatest solvent accessibility were reduced at the highest and lowest potentials in average, respectively. A cooperation interheme interaction was attributed to a pait of the closest hemes, namely, hemes 1 and 2. This assignment can provide the physicochemical bases for the elucidation of electron transfer of this protein.

The Inhibitory Principle of Lipopolysaccharide-Induced Nitric Oxide Production from Inula Britannica var. Chinensis

  • Je, Kang-Hoon;Han, Ah-Reum;Lee, Hyun-Tai;Mar, Woong-Chon;Seo, Eun-Kyoung
    • Archives of Pharmacal Research
    • /
    • 제27권1호
    • /
    • pp.83-85
    • /
    • 2004
  • A sesquiterpene lactone, 1-O-acetyl-4R,6S-britannilactone (1) isolated from the flowers of Inula britannica L. var. chinensis (Rupr.) Reg. (Compositae), was found as an iNOS inhibitory constituent for the first time with an $IC_{50}$ value of 22.1 $\mu$ M which is more potent than the positive control, L-$N^6$-(1-iminoethyl)lysine ($IC_{50} =33.7 \mu$ M). Structure of compound 1 was identified by 1D and 2D NMR experiments and by comparison with the reference standard.

Isolation and Characterization of an Acyclic Isoprenoid from Semecarpus anacardium Linn. and its Antibacterial Potential in vitro - Antimicrobial Activity of Semecarpus anacardium Linn. Seeds -

  • Purushothaman, Ayyakkannu;Meenatchi, Packirisamy;Saravanan, Nallappan;Karuppaiah, Muthu;Sundaram, Ramalingam
    • 대한약침학회지
    • /
    • 제20권2호
    • /
    • pp.119-126
    • /
    • 2017
  • Objectives: Semecarpus anacardium Linn. is a plant well-known for its antimicrobial, antidiabetic and anti-arthritic properties in the Ayurvedic and Siddha system of medicine. This has prompted the screening of this plant for antibacterial activity. The main aims of this study were to isolate compounds from the plant's seeds and to evaluate their antibacterial effects on clinical bacterial test strains. Methods: The n-butanolic concentrate of the seed extract was subjected to thin layer chromatography (TLC) and repeated silica gel column chromatography followed by elution with various solvents. The compound was identified based on observed spectral (IR, $^1H$ NMR, $^{13}C$ NMR and high-resolution mass spectrometry) data. The well diffusion method was employed to evaluate the antibacterial activities of the isolated acyclic isoprenoid compound (final concentration: $5-15{\mu}g/mL$) on four test bacterial strains, namely, Staphylococcus aureus (MTCC 96), Bacillus cereus (MTCC 430), Escherichia coli (MTCC 1689) and Acinetobacter baumannii (MTCC 9829). Results: Extensive spectroscopic studies showed the structure of the isolated compound to be an acyclic isoprenoid ($C_{21}H_{32}O$). Moreover, the isoprenoid showed a remarkable inhibition of bacterial growth at a concentration of $15{\mu}g/mL$ compared to the two other doses tested (5 and $10{\mu}g/mL$) and to tetracycline, a commercially available antibiotic that was used as a reference drug. Conclusion: The isolation of an antimicrobial compound from Semecarpus anacardium seeds validates the use of this plant in the treatment of infections. The isolated compound found to be active in this study could be useful for the development of new antimicrobial drugs.

Chemical Structural Features of Humic-like Substances (HULIS) in Urban Atmospheric Aerosols Collected from Central Tokyo with Special Reference to Nuclear Magnetic Resonance Spectra

  • Katsumi, Naoya;Miyake, Shuhei;Okochi, Hiroshi
    • Asian Journal of Atmospheric Environment
    • /
    • 제12권2호
    • /
    • pp.153-164
    • /
    • 2018
  • We measured $^1H$ and $^{13}C$ nuclear magnetic resonance (NMR) spectra of Humic-like substances (HULIS) in urban atmospheric aerosols isolated by diethylaminoethyl (DEAE) and hydrophilic-lipophilic balance (HLB) resin to characterize their chemical structure. HULIS isolated by DEAE resin were characterized by relatively high contents of aromatic protons and relatively low contents of aliphatic protons in comparison with HULIS isolated by HLB resin, while the contents of protons bound to oxygenated aliphatic carbon atoms were similar. These results were consistent with the results of the $^{13}C$ NMR analysis and indicate that hydrophobic components were more selectively adsorbed onto HLB, while DEAE resins selectively retained aromatic carboxylic acids. Furthermore, we demonstrated that the chemical structural features of HULIS were significantly different between spring and summer samples and that these disparities were reflective of their different sources. The estimated concentrations of HULIS in spring were found to be regulated by vehicle emissions and pollen dispersion, while the behavior of HULIS in summer was similar to photochemical oxidant and nitrogen dioxide concentrations. The proportion of aliphatic protons for summer samples was higher than that for spring samples, while the proportion of aromatic protons for summer samples was lower than that for spring samples. These seasonal changes of the chemical structure may also involve in their functional expression in the atmosphere.