Kim, Changhyun;Kim, Young-Kil;Hong, Munpyo;Seo, Young-Ae;Yang, Sung-Il;Park, Sung-Kwon
한국언어정보학회:학술대회논문집
/
한국언어정보학회 2002년도 Language, Information, and Computation Proceedings of The 16th Pacific Asia Conference
/
pp.157-165
/
2002
This paper describes our ongoing Korean-Chinese machine translation system, which is based on verb patterns. A verb pattern consists of a source language pattern part for analysis and a target language pattern part for generation. Knowledge description on lexical level makes it easy to achieve accurate analyses and natural, correct generation. These features are very important and effective in machine translation between languages with quite different linguistic structures including Korean and Chinese. We performed a preliminary evaluation of our current system and reported the result in the paper.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권4호
/
pp.1409-1425
/
2021
In wide-ranging information society, fast and easy access to information in language of one's choice is indispensable, which may be provided by using various multilingual Natural Language Processing (NLP) applications. Natural language text contains references among different language elements, called anaphoric links. Resolving anaphoric links is a key problem in NLP. Anaphora resolution is an essential part of NLP applications. Anaphoric links need to be properly interpreted for clear understanding of natural languages. For this purpose, a mechanism is desirable for the identification and resolution of these naturally occurring anaphoric links. In this paper, a framework based on Hobbs syntactic approach and a system developed by Lappin & Leass is proposed for resolution of reflexive anaphoric links, present in Urdu text documents. Generally, anaphora resolution process takes three main steps: identification of the anaphor, location of the candidate antecedent(s) and selection of the appropriate antecedent. The proposed framework is based on exploring the syntactic structure of reflexive anaphors to find out various features for constructing heuristic rules to develop an algorithm for resolving these anaphoric references. System takes Urdu text containing reflexive anaphors as input, and outputs Urdu text with resolved reflexive anaphoric links. Despite having scarcity of Urdu resources, our results are encouraging. The proposed framework can be utilized in multilingual NLP (m-NLP) applications.
현재 자연어 처리(NLP)에 대한 연구는 급속히 발전하고 있다. 자연어 처리는 인간이 일상생활에서 사용하는 언어의 의미를 분석하여 컴퓨터가 처리할 수 있도록 하는 기술로 음성인식, 맞춤법 검사, 텍스트 분류 등 여러 분야에 사용하고 있다. 현재 가장 많이 사용되는 자연어처리 라이브러리는 영어를 기준으로 한 NLTK로 한글처리에 단점을 가지고 있다. 따라서 본 논문에서는 한글 토크나이징(Tokenizing) 라이브러리인 KonLPy와 Soynlp를 소개 후 형태소 분석 및 처리 기법을 분석하고, KonLPy의 단점을 보완한 Soynlp와의 모듈을 비교·분석하여 향후 의료분야에 적합한 자연어 처리 모델로 활용하고자 한다.
Purpose In this study, we propose the special purposed R package named ""new_Noun()" to process nonstandard texts appeared in various social networks. As the Big data is getting interested, R - analysis tool and open source software is also getting more attention in many fields. Design/methodology/approach With more than 9,000 R packages, R provides a user-friendly functions of a variety of data mining, social network analysis and simulation functions such as statistical analysis, classification, prediction, clustering and association analysis. Especially, "KoNLP" - natural language processing package for Korean language - has reduced the time and effort of many researchers. However, as the social data increases, the informal expressions of Hangeul (Korean character) such as emoticons, informal terms and symbols make the difficulties increase in natural language processing. Findings In this study, to solve the these difficulties, special algorithms that upgrade existing open source natural language processing package have been researched. By utilizing the "KoNLP" package and analyzing the main functions in noun extracting command, we developed a new integrated noun processing package "new_Noun()" function to extract nouns which improves more than 29.1% compared with existing package.
Won, Jong Un;Jeon, Hong Kyu;Kim, Min Joong;Kim, Beak Hyun;Kim, Young Min
International Journal of Internet, Broadcasting and Communication
/
제14권4호
/
pp.189-197
/
2022
Today, we are exposed to various text-based media such as newspapers, Internet articles, and SNS, and the amount of text data we encounter has increased exponentially due to the recent availability of Internet access using mobile devices such as smartphones. Collecting useful information from a lot of text information is called text analysis, and in order to extract information, it is performed using technologies such as Natural Language Processing (NLP) for processing natural language with the recent development of artificial intelligence. For this purpose, a morpheme analyzer based on everyday language has been disclosed and is being used. Pre-learning language models, which can acquire natural language knowledge through unsupervised learning based on large numbers of corpus, are a very common factor in natural language processing recently, but conventional morpheme analysts are limited in their use in specialized fields. In this paper, as a preliminary work to develop a natural language analysis language model specialized in the railway field, the procedure for construction a corpus specialized in the railway field is presented.
자연어 처리는 최근 기계학습 및 딥러닝 기술의 발전과 적용으로 성능이 빠르게 향상되고 있으며, 이로 인해 활용 분야도 넓어지고 있다. 특히 비정형 텍스트 데이터에 대한 분석 요구가 증가함에 따라 자연어 처리에 대한 관심도 더욱 높아지고 있다. 그러나 자연어 전처리 과정 및 기계학습과 딥러닝 이론의 복잡함과 어려움으로 인해 아직도 자연어 처리 활용의 장벽이 높은 편이다. 본 논문에서는 자연어 처리의 전반적인 이해를 위해 현재 활발히 연구되고 있는 자연어 처리의 주요 분야와 기계학습 및 딥러닝을 중심으로 한 주요 기술의 현황에 대해 살펴봄으로써, 보다 쉽게 자연어 처리에 대해 이해하고 활용할 수 있는 기반을 제공하고자 한다. 이를 위해 인공지능 기술 분류체계의 변화를 통해 자연어 처리의 비중 및 변화 과정을 살펴보았으며, 기계학습과 딥러닝을 기반으로 한 자연어 처리 주요 분야를 언어 모델, 문서 분류, 문서 생성, 문서 요약, 질의응답, 기계번역으로 나누어 정리하고 각 분야에서 가장 뛰어난 성능을 보이는 모형들을 살펴보았다. 그리고, 자연어 처리에서 활용되고 있는 주요 딥러닝 모형들에 대해 정리하고 자연어 처리 분야에서 사용되는 데이터셋과 성능평가를 위한 평가지표에 대해 정리하였다. 본 논문을 통해, 자연어 처리를 자신의 분야에서 다양한 목적으로 활용하고자 하는 연구자들이 자연어 처리의 전반적인 기술 현황에 대해 이해하고, 자연어 처리의 주요 기술 분야와 주로 사용되는 딥러닝 모형 및 데이터셋과 평가지표에 대해 보다 쉽게 파악할 수 있기를 기대한다.
기록물은 과거와 현재를 포함하는 시간적 특성, 특정 언어에 제한되지 않는 언어적 특성, 기록물이 갖고 있는 다양한 유형을 복합적으로 갖고 있다. 기록물의 생성, 보존, 활용에 이르는 생애주기에서 텍스트, 영상, 음성으로 구성된 데이터의 처리는 많은 노력과 비용을 수반한다. 기계번역, 문서요약, 개체명 인식, 이미지 인식 등 자연어 처리 분야의 주요 기술은 전자기록과 아날로그 형태의 디지털화에 광범위하게 적용할 수 있다. 특히, 딥러닝 기술이 적용된 한국어 자연어 처리 분야는 다양한 형식의 기록물을 인식하고, 기록관리 메타데이터를 생성하는데 효과적이다. 본 논문은 한국어 자연어 처리를 기술을 소개하고, 기록 관리 분야에서 자연어 처리 기술을 적용하기 위한 고려사항을 논의한다. 기계번역, 광학문자인식과 같은 자연어 처리 기술이 기록물의 디지털 변환에 적용되는 과정은 파이썬 환경에서 구현한 사례로 소개한다. 한편, 자연어 처리 기술의 활용을 위해 기록관리 분야에서 자연어 처리 기술을 적용하기 위한 환경적 요소와 기록물의 디지털화 지침을 개선하기 위한 방안을 제안한다.
Journal of information and communication convergence engineering
/
제17권4호
/
pp.239-245
/
2019
Recently, effort to obtain various information from the vast amount of social network services (SNS) big data generated in daily life has expanded. SNS big data comprise sentences classified as unstructured data, which complicates data processing. As the amount of processing increases, a rapid processing technique is required to extract valuable information from SNS big data. We herein propose a system that can extract human sentiment information from vast amounts of SNS unstructured big data using the naïve Bayes algorithm and natural language processing (NLP). Furthermore, we analyze the effectiveness of the proposed method through various experiments. Based on sentiment accuracy analysis, experimental results showed that the machine learning method using the naïve Bayes algorithm afforded a 63.5% accuracy, which was lower than that yielded by the NLP method. However, based on data processing speed analysis, the machine learning method by the naïve Bayes algorithm demonstrated a processing performance that was approximately 5.4 times higher than that by the NLP method.
본 연구는 2011년부터 2023년 9월까지 과학교육 분야에서 자연어 처리(NLP) 기법을 적용한 37건의 국내 및 해외 문헌을 분석하여 과학교육에서의 NLP 관련 연구 동향을 파악하고자 하였다. 특히 과학교육에서 NLP 기법의 주요 응용 분야, NLP 기법을 활용할 때 교사의 역할, 국내와 해외의 비교 측면에서 그 내용을 체계적으로 분석하였다. 분석 결과는 다음과 같다. 첫째, NLP 기법이 과학교육에서 형성평가, 자동 채점, 문헌 검토 및 분류, 패턴 추출에 중요하게 활용되고 있음을 확인하였다. 형성평가에서 NLP를 활용하면 학생들의 학습과정과 이해도를 실시간으로 분석할 수 있다. 이는 교사의 수업에 대한 부담을 줄이고, 학생들에게 정확하고 효과적인 피드백을 제공할 수 있다. 자동 채점에서는 학생들의 응답을 빠르고 정확하게 평가하는 데 기여한다. 문헌 검토 및 분류에서는 과학교육 관련 연구나 학생들의 보고서를 분석하여 주제와 트렌드를 효과적으로 분석하고, 미래 연구 방향을 설정하는 데 도움을 준다. NLP 기법을 패턴 추출에 활용하면 학생들의 생각과 반응에 나타난 공통점이나 패턴을 찾아 효과적으로 분석할 수 있다. 둘째, 과학교육에서 NLP 기법의 도입은 교사의 역할을 지식 전달자에서 학생들의 학습을 지원하고 촉진하는 지도자로 확장했고, 교사들에게 지속적인 전문성 개발을 요구한다. 셋째, 국내에서는 문헌 검토 및 분류에 집중되어 있어 국내 NLP 연구의 다양성을 위해 텍스트 데이터 수집이 용이한 환경 조성이 필요하다. 이러한 분석 결과를 바탕으로 과학교육에서 NLP 기법의 활용하는 방법에 대해 논의하였다.
With the recent application of deep learning to Natural Language Processing (NLP), the performance of NLP has improved significantly and NLP is emerging as a core competency of organizations. However, when encountering NLP use cases that are sporadically reported through various online and offline channels, it is often difficult to come up with a big picture of how to understand and interpret them or how to connect them to business. This study presents a framework for systematically analyzing NLP use cases, considering the characteristics of NLP techniques applicable to almost all industries and business functions, environmental changes in the era of the Fourth Industrial Revolution, and the effectiveness of adopting NLP reflecting all business functional areas. Through solving research questions based on the framework, the usefulness of it is validated. First, by accumulating NLP use cases and pivoting them around the business function dimension, we derive how NLP techniques are used in each business functional area. Next, by synthesizing related surveys and reports to the accumulated use cases, we draw implications for each business function and major NLP techniques. This work promotes the creation of innovative business scenarios and provides multilateral implications for the adoption of NLP by systematically viewing NLP techniques, industries, and business functional areas. The use case analysis framework proposed in this study presents a new perspective for research on new technology use cases. It also helps explore strategies that can dramatically improve organizational performance through a holistic approach that encompasses all business functional areas.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.