• 제목/요약/키워드: NKN

검색결과 77건 처리시간 0.036초

소결 온도에 따른 비납계 NKN-BNT-BT 세라믹의 전기적, 구조적 특성

  • 이성갑;남성필;노현지;배선기;이영희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.104-104
    • /
    • 2009
  • In this study, both structural, dielectric and piezoelectric properties of the NKN-0.96BNT-0.04BT ceramics were investigated. All samples of the NKN-0.96BNT-0.04BT ceramics were fabricated by conventional mixed oxide method with Pt electrodes. We report the improved dielectric and piezoelectric properties in the perovskite structure composed of the NKN, BNT and the BT ceramics. We investigated the effects of NKN, BT on the structural and electrical properties of the NKN-0.93BNT-0.07BT ceramics. The dielectric properties and piezoelectric properties of the NKN-0.93BNT-0.07BT ceramics were superior to those of single composition NKN, NKN-BNT and those values for the NKN-0.93BNT-0.07BT ceramics were 861 and 1.12%.

  • PDF

NKN-0.94BNT-0.06BT 세라믹스의 전기적특성 (Electrical properties of NKN-0.94BNT-0.06BT ceramics)

  • 이영희;남성필;이성갑;배선기;이승환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.298-298
    • /
    • 2010
  • In this study, both structural, dielectric properties of the NKN-0.94BNT-0.06BT ceramics were investigated. All samples of the NKN-0.94BNT-0.06BT ceramics were fabricated by conventional mixed oxide method with Pt electrodes. We report the improved electrical properties in the perovskite structure composed of the NKN, BNT and the BT ceramics. We investigated the effects of NKN, BT on the structural and electrical properties of the NKN-0.94BNT-0.06BT ceramics. The dielectric and structural properties of the NKN-0.94BNT-0.06BT ceramics were superior to those of single composition NKN, NKN-BNT and those values for the NKN-0.94BNT-0.06BT ceramics were 1455, 0.025 and $29.04{\mu}C/cm^2$.

  • PDF

Polymorphic Phase Transition and Temperature Coefficient of Capacitance of Alkaline Niobate Based Ceramics

  • Bae, Seon-Gi;Shin, Hyea-Gyiung;Sohn, Eun-Young;Im, In-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권2호
    • /
    • pp.78-81
    • /
    • 2013
  • $0.95(Na_{0.5}K_{0.5})NbO_3-0.05BaTiO_3+0.2wt%\;Ag_2O$ (hereafter, No excess NKN) ceramics and $0.95(Na_{0.5}K_{0.5})NbO_3-0.05BaTiO_3+0.2wt%\;Ag_2O$ with excess $(Na_{0.5}K_{0.5})NbO_3$ (hereafter, Excess NKN) were fabricated by the conventional solid state sintering method, and their phase transition properties and dielectric properties were investigated. The crystalline structure of No excess NKN ceramics and Excess NKN ceramics were shown characteristics of polymorphic phase transition (hereafter, PPT), especially shift from the orthorhombic to tetragonal phase by increasing sintering temperature range from $1,100^{\circ}C$ to $1,200^{\circ}C$. Also, the temperature coefficient of capacitance (hereafter, TCC) of No excess NKN ceramics and Excess NKN ceramics from $-40^{\circ}C$ to $100^{\circ}C$ was measured to evaluate temperature stability for applications in cold regions. The TCC of No excess NKN and Excess NKN ceramics showed positive TCC characteristics at a temperature range from $-40^{\circ}C$ to $100^{\circ}C$. Especially, Excess NKN showed a smaller TCC gradient than those of Excess NKN ceramics in range from $-40^{\circ}C$ to $100^{\circ}C$. Therefore, NKN piezoelectric ceramics combined with temperature compensated capacitor having negative temperature characteristics is desired for usage in cold regions.

유기금속열분해 방법으로 제작된 NKN 박막의 강유전특성 (Ferroelectric properties of NKN Thin Films prepared by Metal Organic Decomposition method)

  • 김경태;김창일;이성갑
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 C
    • /
    • pp.1394-1395
    • /
    • 2006
  • $(Na_{0.5}LaK_{0.5})NbO_3$ (NKN) thin films were fabricated by the alkoxide-based MOD method. NKN stock solutions were made spin-coated onto the Pt/Ti/$SiO_2$/Si substrate. The structural properties of the NKN thin films examined by x-ray diffraction. The perovskite phase was obtained as a function of the annealing temperature from $550^{\circ}C$ to $700^{\circ}C$ for 1h. The crystallinity and grain size of the NKN thin films increased with increasing annealing temperature. The dielectric constants and loss of the NKN thin films annealed at $650^{\circ}C$ ($t_{eq}$=2.35 nm) showed 323 and 0.025.

  • PDF

무연 NKN 세라믹스를 이용한 AE 센서 제작 및 특성 (Fabrication and Characteristic of AE sensor using the Lead-free NKN Ceramics)

  • 이갑수;류주현;홍재일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.39-40
    • /
    • 2006
  • AE sensor using lead-free ceramics should be developed for prohibiting environment protection. In this study, Langevin type AE sensor was manufactured as air backing structure. Here, the piezoelectic element was used as PZT(EC-65) and NKN, respectively. The resonant frequency of AE sensor using PZT was 143 kHz and the resonant frequency of AE sensor using NKN was 178 kHz. The waveform of AE sensor using NKN was responded more sensitively than that of AE sensor using PZT.

  • PDF

소결 온도에 따른 NKN-BT 세라믹스의 압전 특성 (Piezoelectric properties of NKN-BT ceramics with various sintering temperature)

  • 조서현;남성필;노현지;김대영;이태호;이성갑;배선기
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.294-294
    • /
    • 2010
  • In this study, piezoelectric properties of NKN-BT ceramics with various sintering temperature were investigated. The NKN-BT ceramics were fabricated by physicochemical method and characterized by X-ray diffraction analysis and scanning electron microscopy. The structural and dielectric properties of doped BT solution on the NKN ceramics were investigated. The dielectric constant and dielectric loss of NKN-BT ceramics sintered at $1130^{\circ}C$ was 2321 and 0.35, respectively.

  • PDF

CuO와 ZnO 첨가에 따른 NKN-BZT 세라믹스의 압전 특성 (Piezoelectric Properties of NKN-BZT Ceramics Sintered with CuO and ZnO Additives)

  • 이승환;백상돈;이동현;이성갑;이영희
    • 한국전기전자재료학회논문지
    • /
    • 제24권8호
    • /
    • pp.636-640
    • /
    • 2011
  • The lead-free $0.98(Na_{0.5},K_{0.5})NbO_3-0.02Ba(Zr_{0.52},Ti_{0.48})O_3$-(hereafter NKN-BZT) CuO, ZnO-doped ceramics were prepared using a conventional mixed oxide method. NKN-BZT ceramics doped CuO, ZnO have superior structural and electrical properties than pure NKN-BZT ceramics. For the NKN-BZT-ZnO ceramics sintered at $1,120^{\circ}C$, piezoelectric constant ($d_{33}$) of sample showed the optimum values of 172 pC/N. The $0.98(Na_{0.5},K_{0.5})NbO_3-0.02Ba(Zr_{0.52},Ti_{0.48})O_3$-ZnO ceramics are a promising candidate for lead-free piezoelectric materials.

Electrical Properties of Lead Free (1-x)(Na0.5K0.5) NbO3-xLiNbO3 Piezoelectric Ceramics

  • Park, Jong-Ho;Park, Hui-Jin;Choi, Byung-Chun
    • 한국재료학회지
    • /
    • 제26권12호
    • /
    • pp.721-725
    • /
    • 2016
  • This work focuses on the electrical conduction mechanism in a lead free ($Na_{0.5}K_{0.5}NbO_3$ ; NKN) ceramics system with $LiNbO_3$ content of approximately critical concentration $x{\geq}0.2$. Lead free $(1-x)(Na_{0.5}K_{0.5})NbO_3-x(LiNbO_3)$, $NKN-LN_x$ (x = 0.1, 0.2) ceramics were synthesized by solid-state reaction method. Crystal structures are confirmed by X-ray diffraction. The electric-mechanical bond coefficient $k_p$ decreases and the phase transition temperature $T_c$ increases with increasing x content, as determined by dielectric and piezoelectric measurements. The value of the real dielectric constants ${\varepsilon}^{\prime}$ and $k_BT{\varepsilon}^{\prime\prime}$ showed anomalies around $T_c$ ($462^{\circ}C$ in the NKN-LN0.1 and $500^{\circ}C$ in the NKN-LN0.2). For the ionic conduction of mobile ions, the activation energies are obtained as $E_I=1.76eV$ (NKN-LN0.1) and $E_I=1.55eV$ (NKN-LN0.2), above $T_c$, and $E_{II}=0.78$ (NKNL-N0.1) and $E_{II}=0.81$ (NKN-LN0.2) below $T_c$. It is believed that the conduction mechanisms of NKN-LNx ceramics are related to ionic hopping conduction, which may arise mainly due to the jumping of $Li^+$ ions.

NKN-(1-x)BNT-xBT 세라믹스의 압전 및 유전특성 (Piezoelectric and Dielectric Properties of NKN-(1-x)BNT-xBT Ceramics)

  • 이승환;남성필;이성갑;이영희
    • 한국전기전자재료학회논문지
    • /
    • 제23권10호
    • /
    • pp.771-775
    • /
    • 2010
  • In this study, piezoelectric and dielectric properties of the $(Na_{0.5}K_{0.5})NbO_3-(1-x)(Bi_{0.5}Na_{0.5})TiO_3-xBaTiO_3$ [NKN-(1-x)BNT-xBT] ceramics were investigated. The lead-free NKN-(1-x)BNT-xBT ceramics were fabricated by a conventional mixed oxide method. The results indicate that the addition of $BaTiO_3$ significantly influences the sintering, microstructure, phase transition and electrical properties of NKN-BNT ceramics. A gradual change in the piezoelectric and dielectric properties was observed with the increase of BT contents. The dielectric constant, piezoelectric constant ($d_{33}$) and electromechanical coupling factor ($k_p$) increased at the morphotropic phase boundary (MPB). The $d_{33}$=184 pC/N, $k_p$=0.38, dielectric constant=1455 with dielectric loss value of less than 1% were obtained for the NKN-0.95BNT-0.05BT ceramics sintered at $1150^{\circ}C$ for 2h. These results demonstrate that the NKN-(1-x)BNT-xBT ceramics is an attractive candidate for lead-free piezoelectric materials.

소결온도에 따른 NKN-LST 세라믹스의 구조 및 압전 특성 (Structure and piezoelectric properties of NKN-LST ceramics with sintering temperature)

  • 이영희;백상돈;최의선;김재식;배기범
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1434-1435
    • /
    • 2011
  • In this study, NKN-LST ceramics were prepared by a conventional mixed oxide method and their structure and piezoelectric properties were investigated with the variations of sintering temperature. It was observed that the various sintering temperatures influenced the electrical properties and structural properties of the NKN-LST ceramics. It was found that the piezoelectric properties of NKN-LST ceramic sintered at $1080^{\circ}C$ for 4h has a piezoelectric constant and a planar electromechanical coupling coefficient of 161pC/N and 0.311% respectively. This ceramics look very promising as possible, practicable, lead-free replacements for lead zirconate titanate.

  • PDF