• Title/Summary/Keyword: NIR Spectroscopy

Search Result 465, Processing Time 0.034 seconds

Possibility of Wood Classification in Korean Softwood Species Using Near-infrared Spectroscopy Based on Their Chemical Compositions

  • Park, Se-Yeong;Kim, Jong-Chan;Kim, Jong-Hwa;Yang, Sang-Yun;Kwon, Ohkyung;Yeo, Hwanmyeong;Cho, Kyu-Chae;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.202-212
    • /
    • 2017
  • This study was to establish the interrelation between chemical compositions and near infrared (NIR) spectra for the classification on distinguishability of domestic gymnosperms. Traditional wet chemistry methods and infrared spectral analyses were performed. In chemical compositions of five softwood species including larch (Larix kaempferi), red pine (Pinus densiflora), Korean pine (Pinus koraiensis), cypress (Chamaecyparis obtusa), and cedar (Cryptomeria japonica), their extractives and lignin contents provided the major information for distinction between the wood species. However, depending on the production region and purchasing time of woods, chemical compositions were different even though in same species. Especially, red pine harvested from Naju showed the highest extractive content about 16.3%, whereas that from Donghae showed about 5.0%. These results were expected due to different environmental conditions such as sunshine amount, nutrients and moisture contents, and these phenomena were also observed in other species. As a result of the principal component analysis (PCA) using NIR between five species (total 19 samples), the samples were divided into three groups in the score plot based on principal component (PC) 1 and principal component (PC) 2; group 1) red pine and Korean pine, group 2) larch, and group 3) cypress and cedar. Based on the chemical composition results, it was concluded that extractive content was highly relevant to wood classification by NIR analysis.

Separation of Single-Wall Carbon Nanotubes by Agarose Gel (아가로스 겔을 이용한 단일벽 탄소나노튜브 분리)

  • Yu, Lan;Lim, Yun-Soo;Han, Jong-Hun
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.272-276
    • /
    • 2011
  • The separation of metallic and semiconducting single-wall carbon nanobubes (SWCNTs) by agarose gel method was carried out in this study. The effect of concentration of agarose, SDS (sodium dodecyl sulfate), and pH in the solution on separation behavior was investigated. With increasing the concentration of agarose in the solution, it showed that the ratio of metallic SWCNTs, which was analyzed from UV-vis-NIR spectroscopy, was increased in the solution phase, while the overall concentration of SWCNTs was decreased. With increasing the concentration of SDS, we could observe that the ratio of metallic SWCNTs was increased due to more affinity between SDS molecules and metallic SWCNT. The highest metallic SWCNTs ratio was reached up to 58.4% when the pH of solution was 8.2.

THE NONDESTRUCTIVE MEASUREMENT OF THE SOLUBLE SOLID AND ACID CONTENTS OF INTACT PEACH USING VIS/NIR TRANSMITTANCE SPECTRA

  • Hwang, I.G.;Noh, S.H.;Lee, H.Y.;Yang, S.B.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.210-218
    • /
    • 2000
  • Since the SSC(soluble solid contents) and titratable acidity of fruit are highly concerned to the taste, the need for measuring them by non-destructive technology such as NIR(Visual and Near-infrared) spectroscopy is increasing. Specially, in order to grade the quality of each fruit with a sorter at sorting and packing facilities, technologies for online measurement satisfying the tolerance in terms of accuracy and speed should be developed. Many researches have been done to develop devices to measure the internal qualities of fruit such as SSC, titratable acidity, firmness, etc. with the VIS(Visual)/NIR(Near Infrared) reflectance spectra. The distributions of the SSC, titratable acidity, firmness, etc. are different with respect to the position and depth of fruit, and generally the VIS/NIR light can interact with fruit in a few millimeters of pathlength, and it is very difficult to measure the qualities of inner flesh of fruit. Therefore, to measure the average concentrations of each quality factor such as SSC and titratable acidity with the reflectance-type NIR devices, the spectra of fruit at several positions should be measured. Recently, the interest about the transmittance-type VIS/NIR devices is increasing. NIR light can penetrate through the fruit about 1/10-1/1,000,000 %. Therefore, very intensive light source and very sensitive sensor should be adopted to measure the transmitted light spectra of intact fruit. The ultimate purpose of this study was to develop a device to measure the transmitted light spectra of intact fruit such as apple, pear, peach, etc. With the transmittance-type VIS/NIR device, the feasibility of measurement of the SSC and titratable acidity in intact fruit cultivated in Korea was tested. The results are summarized as follows; A simple measurement device which can measure the transmitted light spectra of intact fruit was constructed with sample holder, two 500W-tungsten halogen lamps, a real-time spectrometer having a very sensitive CCD array sensor and optical fiber probe. With the device, it was possible to measure the transmitted light spectra of intact fruit such as apple, pear and peach. Main factors affecting the intensity of transmitted light spectra were the size of sample, the radiation intensity of light source and the integration time of the detector. Sample holder should be designed so that direct light leakage to the probe could be protected. Preprocessing method to the raw spectrum data significantly influenced the performance of the nondestructive measurement of SSC and titratable acidity of intact fruit. Representative results of PLS models in predicting the SSC of peach were SEP of 0.558 Brix% and R2 of 0.819, and those in predicting titratable acidity were SEP of 0.056% and R2 of 0.655.

  • PDF

Mastitis Diagnostics by Near-infrared Spectra of Cows milk, Blood and Urine Using SIMCA Classification

  • Tsenkova, Roumiana;Atanassova, Stefka
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1247-1247
    • /
    • 2001
  • Constituents of animal biofluids such as milk, blood and urine contain information specifically related to metabolic and health status of the ruminant animals. Some changes in composition of biofluids can be attributed to disease response of the animals. Mastitis is a major problem for the global dairy industry and causes substantial economic losses from decreasing milk production and reducing milk quality. The purpose of this study was to investigate potential of NIRS combined with multivariate analysis for cow's mastitis diagnosis based on NIR spectra of milk, blood and urine. A total of 112 bulk milk, urine and blood samples from 4 Holstein cows were analyzed. The milk samples were collected from morning milking. The urine samples were collected before morning milking and stored at -35$^{\circ}C$ until spectral analysis. The blood samples were collected before morning milking using a catheter inserted into the carotid vein. Heparin was added to blood samples to prevent coagulation. All milk samples were analyzed for somatic cell count (SCC). The SCC content in milk was used as indicator of mastitis and as quantitative parameter for respective urine and blood samples collected at same time. NIR spectra of blood and milk samples were obtained by InfraAlyzer 500 spectrophotometer, using a transflectance mode. NIR spectra of urine samples were obtained by NIR System 6500 spectrophotometer, using 1 mm sample thickness. All samples were divided into calibration set and test set. Class variable was assigned for each sample as follow: healthy (class 1) and mastitic (class 2), based on milk SCC content. SIMCA was implemented to create models of the respective classes based on NIR spectra of milk, blood or urine. For the calibration set of samples, SIMCA models (model for samples from healthy cows and model for samples from mastitic cows), correctly classified from 97.33 to 98.67% of milk samples, from 97.33 to 98.61% of urine samples and from 96.00 to 94.67% of blood samples. From samples in the test set, the percent of correctly classified samples varied from 70.27 to 89.19, depending mainly on spectral data pretreatment. The best results for all data sets were obtained when first derivative spectral data pretreatment was used. The incorrect classified samples were 5 from milk samples,5 and 4 from urine and blood samples, respectively. The analysis of changes in the loading of first PC factor for group of samples from healthy cows and group of samples from mastitic cows showed, that separation between classes was indirect and based on influence of mastitis on the milk, blood and urine components. Results from the present investigation showed that the changes that occur when a cow gets mastitis influence her milk, urine and blood spectra in a specific way. SIMCA allowed extraction of available spectral information from the milk, urine and blood spectra connected with mastitis. The obtained results could be used for development of a new method for mastitis detection.

  • PDF

Variey Discrimination of Sorghum-Sudangrass Hybrids Seed Using near Infrared Spectroscopy (근적외선분광법을 이용한 수수×수단그라스 교잡종 종자의 품종 판별)

  • Lee, Ki-Won;Song, Yowook;Kim, Ji Hye;Rahman, Md Atikur;Oh, Mirae;Park, Hyung Soo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.4
    • /
    • pp.259-264
    • /
    • 2020
  • The aim of this study was to investigate the feasibility of discrimination 12 different cultivar of sorghum × sudangrass hybrid (Sorghum genus) seed through near infrared spectroscopy (NIRS). The amount of samples for develop to the best discriminant equation was 360. Whole samples were applied different three spectra range (visible, NIR and full range) within 680-2500 nm wavelength and the spectrastar 2500 Near near infrared was used to measure spectra. The calibration equation for discriminant analysis was developed partial least square (PLS) regression and discrimination equation (DE) analysis. The PLS discriminant analysis model for three spectra range developed with mathematic pretreatment 1,8,8,1 successfully discriminated 12 different sorghum genus. External validation indicated that all samples were discriminated correctly. The whole discriminant accuracy shown 82 ~ 100 % in NIR full range spectra. The results demonstrated the usefulness of NIRS combined with chemometrics as a rapid method for discrimination of sorghum × sudangrass hybrid cultivar through seed.

Comparisons between Micro-Kjeldahl and Near Infrared Reflectance Spectroscopy for Protein Content Analysis of Malting Barley Grain (근적외분광분석법과 Micro-Kjeldahl 법 간의 맥주보리 종실의 단백질함량 분석 비교)

  • Kim, Byung-Joo;Suh, Duck-Yong;Suh, Hyung-Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.5
    • /
    • pp.489-494
    • /
    • 1994
  • Near Infrared Reflectance Spectroscopy(NIRS) has been used as a tool for the rapid, accurate, protein assay of malting barley. NIRS used in this study was filter type instruments, Neotec 102. The objective of this study was to obtain the best calibration equation, for the rapid, ease and accurate protein content analysis of malting barley using NIRS system. The optimum wavelength for protein content analysis used NIRS were 2095nm, 2095/1941nm, 2095/1941/2282nm, 2905/1941/2282/2086nm, respectively. Mean protein content with this calibration equation in NIRS analysis was 10.59%, while 10.60% in Micro-Kjeldahl one. The range of protein content in Micro-Kjeldahl was 8.66~12.66% and that in NIRS was 8.80~12.35%. When 18 other varieties produced in 1992 were analysed with 2095nm, 2095/1941nm, 2095/1941/2282nm, 2095/1941/2282/2086nm equation, standard deviation of difference (SDD)and standard error of performence(SEP) and $R^2$ values were 0.47, 0.43, 0.95, respectively. Both the mean protein content by Micro-Kjeldahl and by NIRS was 10.25%. With this equation, analysied 31 varities produced in 1993, SDD and SEP and r values were 0.69, 0.67, 0.91, respectively, and that bias value was 0.65. In this analysis, mean protein content by Micro-Kjeldahl was 10.17% and by NIRS was 10.81%. The range of protein content in Micro-Kjeldahl was 7.58~14.29%, What that in NIRS was 8.63~13.93%. After adjusted bias in the best calibration equation, mean protein content of Micro-Kjeldahl was 10.17% and that of NIRS was 10.09%, without variance of SDD, SEP and r values.

  • PDF

Comparison of Quality Characteristics of Sesame Oil and Blend Oil by Using Component Analysis and NIR Spectroscopy (참기름과 혼합유의 성분 및 NIR Spectrum 분석을 통한 품질특성 비교)

  • Joo, Jae-young;Yeo, Yong-heon;Lee, Namrye
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.6
    • /
    • pp.739-743
    • /
    • 2017
  • Product distribution and consumption in the military is difficult due to unique contracts and supply systems. It is difficult to change suppliers immediately when quality problem is encountered. Due to these special circumstances, the quality of products must be thoroughly controlled. Sesame oil is used to increase the taste and nutrition of food, but it is more expensive than other cooking oils. Oil producers may blend other cooking oils with sesame oil to make higher profits, so it has become important to identify good and bad products. In this study, pure sesame oil and blend oils were compared by analyzing their smell, taste, chemical components, and near infra-red spectra to determine quality differences between them.

Use of NIR Soil Analyzer for Measuring Chemical Properties of Field Soil (근적외 토앙분석기를 이용한 토양의 이화학적 성질분석)

  • Ryu, Kwan-Shig;Cho, Rae-Kwang;Park, Woo-Churl;Kim, Bok-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.4
    • /
    • pp.278-283
    • /
    • 2001
  • The overall objective of this research was to show a NIR soil analyzer assessing soil fertility by measuring soil properties rapidly. A total of 140 soil samples were used to obtain calibrations and validation estimating soil properties. The soil samples were ground to pass 0.2mm sieve openings. Partial least square regression analysis was used to develop a calibration for soil analysis. The results indicated that NIR soil analyzer could be used as a routine method for quantitatively determining pH, OM, total nitrogen, CEC, extractable Ca, Mg, K, available $SiO_2$ and soil moisture simultaneously within one minute. Therefore, the NIR soil analyzer may be suitable for quick estimation of soil fertility estimation in fertilizer assessments.

  • PDF

Rapid Near Infrared Transmittance Analysis of Ingredients on the Casing Materials (근적외선 투과 분광분석법을 이용한 가향액 중 가향제 분석)

  • Han, Jung-Ho;Jung, Han-Joo;Yang, Burm-Ho;Rhee, Moon-Soo;Kim, Yong-Ok
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.28 no.2
    • /
    • pp.111-116
    • /
    • 2006
  • It is very important to add uniformly casing materials on tobacco for taste and flavor. However, analysis of casing materials was spent much time, effort and money. The object of this study was the development of a rapid method for the determination of glycerine, propylene glycol(PG), sucrose, glucose, fructose and water in the casing materials using the NIR transmittance method. Hundreds of calibration samples, with extended ranges (50%, 75%, 100%, 125%, and 150% of standard addition) in each constituent, were prepared in the casing materials at the various temperatures $(25^{\circ}C\;and\;30^{\circ}C)$. Calibration equation was developed by modified partial least square (MPLS) method using second derivative. The standard error of calibration and $R^2$ between added value and NIR estimated value results were $0.007{\sim}0.034\;and\;0.996{\sim}1.000$ for the casing sample set, respectively. The standard error of prediction and R2 between added value and NIR estimated value results were $0.010{\sim}0.034\;and\;0.997{\sim}1.000$ for the casing sample set, respectively. The analysis result was not different significantly between the NIR and added value. These results show that the NIR measurement system is an effective tool to ensure quality on the casing materials.

Synthesis of Bis(dithiobenzil) Metal Complex and Its Photostability (Bis(dithiobenzil) 금속 화합물의 합성 및 광안정성)

  • Lee, Gun-Dae;Park, Na Yi;Jeon, Seung Yup;Heo, Jin;Son, Dae Hee;Hwang, Tae Kyung;Park, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.433-437
    • /
    • 2007
  • Bis(dithiobenzil) metal complex, used as functional NIR absorbing dye and photostabilizer, was synthesized using bezoin and anisoin as intermediate compounds. And squarylium, a charge generation material, was synthesized to find its photostability effect. The structure of the product was determined by $^1H-NMR$ and FT-IR and the thermal property was analyzed by DSC and TGA. Optical property and photostability were determined by UV-Vis-NIR spectroscopy. High absorbance was obtained in the NIR range and maximum absorbing wavelength was shifted depending on the nature and position of substituent in the bis(dithiobenzil) metal complex. The photofading effect of squarylium decreased by the addition of bis(dithiobenzil) metal complex.