• Title/Summary/Keyword: NIH 3T3 fibroblast

Search Result 70, Processing Time 0.024 seconds

Evaluation of Mechanical Tearing based Cell Disruption Capability to Shape Nanostructures formed on Nanoporous Alumina Filter (다공성 알루미나 필터 표면에 형성된 나노구조물의 형상에 따른 찢어짐에 의한 세포파쇄 특성 평가)

  • Lee, Yong-Hun;Han, Eui-Don;Kim, Byeong-Hee;Seo, Young-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.1-5
    • /
    • 2017
  • This study investigated the mechanical tearing of a cell membrane using a nanostructured alumina filter for easy and quick mechanical cell disruption. Nanostructured alumina filters were prepared by a multi-step aluminum anodizing process and nanopore etching process. Six different types of nanostructures were formed on the surface of the nanoporous alumina filters to compare the mechanical cell disruption characteristics according to the shape of the nanostructure. The prepared alumina filter was assembled in a commercial filter holder, and then, NIH3T3 fibroblast cells in a buffer solution were passed through the nanostructured alumina filter at a constant pressure. By measuring the concentration of proteins and DNA, the characteristics of mechanical cell disruption of the nanostructured alumina filter were investigated.

Chemical Synthesis and Determination of Biological Activity of the Epidermal Growth Factor-Like Domain of Mouse Betacellulin

  • Shin, Song-Yub;Kang, Shin-Won;Ha, Jong-Myung
    • BMB Reports
    • /
    • v.28 no.2
    • /
    • pp.87-93
    • /
    • 1995
  • To investigate the biological functions of the EGF-like domain of mouse betacellulin (BTC), mouse BTC(33-80), a 48-residue peptide corresponding to the EGF-like domain, was synthesized by stepwise solidphase methods using a 9-fluorenylmethoxycarbonyl (Fmoc) strategy. The homogeneity of synthetic mouse BTC(33-80) was confirmed by analytical reversed phase (RP)-HPLC, amimo acid analysis, and fast atom bombardment mass spectrometer (FAB-MS). Three disulfide bond pairings of synthetic mouse BTC(33-80) were established by amino acid analysis of cysteine-containing fragments derived from thermolytic digestion. These were consistent with the pairings of EGF and transforming growth factor ($TGF-{\alpha}$). The EGF-Iike domain of mouse BTC showed equipotent activity in both EGF-receptor binding on A-431 epidermoid carcinoma cells, and mitogenesis on NIH-3T3 fibroblast cells, as compared with authentic h-EGF. Results suggest that the EGF-Iike domain of BTC plays a significant role in mitogenic activity with an EGF-receptor mediated system.

  • PDF

Anti-oxidant and Anti-aging Activity on Saxifraga stolonifera MEERBURGH Ethanol Extract (바위취 에탄올 추출물의 항산화 및 항노화 작용)

  • Yoon, Mi-Yun;Lim, Hye-Won;Sim, Sang-Soo;Choe, Tae-Boo
    • YAKHAK HOEJI
    • /
    • v.51 no.5
    • /
    • pp.343-349
    • /
    • 2007
  • To investigate the effect of ethanol extract of Saxifraga stolonifera MEERBURGH on skin care, we measured anti-oxidant and anti-aging activity. S. stolonifera ethanol extract itself had anti-oxidant activity in a dose-dependent manner in DPPH radical scavenging. Silica dose-dependently increased the intracellular ROS generation in RAW 264.7 cells. S. stolonifera ethanol extract inhibited silica-induced intracellular superoxide anion generation, $H_2O_2$ and hydroperoxide generation in RAW 264.7 cells. S. stolonifera ethanol extract significantly inhibited both hyaluronidase and elastase activity, also significantly inhibited MMP-1(collagenase) activity as well. In NIH 3T3 fibroblast cells, S. stolonifera ethanol extract significantly increased collagen-like polymer synthesis, which suggesting the S. stolonifera ethanol extract might be used as hydration and anti-wrinkle agents. From the above results, it is suggested that the main ingredients of S. stolonifera ethanol extract play an important role in anti-oxidant and anti-aging activity.

Inhibitory Effects of the Methanolic Fraction from Pueraria Radix on Hydrogen Peroxide-induced Lipid Peroxidation and Cadmium-induced Cytotoxicity (III) (갈근 메탄올분획의 과산화수소에 의해 유도된 지질과산화와 카드뮴에 대한 독성억제효과 (III))

  • Lim, Jin-A;Kim, Yun-Ha;Baek, Seung-Hwa
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.6
    • /
    • pp.1556-1560
    • /
    • 2006
  • The effects of the methanol subfraction from Pueraria Radix on hydrogen peroxide-induced lipid peroxidation and cadmium-induced cytotoxicity were investigated in NIH 3T3 fibroblast cells. After the methanol subfraction treatment, the content of MDA induced by 600 ${\mu}g$ $H_2O_2$ significantly decreased in proportion to the subfraction concentrations as well as 50 ${\mu}M$ $CdCl_2$-induced cytotoxicity. Especially, 200 ${\mu}g/mL$ concentration of methanol subfraction was strongly shown inhibition of lipid peroxidation and detoxification of cadmium. These results suggest that the methanol subfraction from Pueraria Radix retains a potential antioxidant and protective effect against cadmium.

Cytotoxicity of Hyaluronic Acid Membrane Cross-linked with Lactide (락타이드로 가교시킨 히아루론산 막의 세포독성)

  • Kim, Won-Jung;Kwon, Ji-Young;Cheong, Seong-Ihl;Kim, In-Seop
    • KSBB Journal
    • /
    • v.21 no.4
    • /
    • pp.255-259
    • /
    • 2006
  • The biodegradable hyaluronic acid(HA) membranes cross-linked with lactide using the crosslinking agent, 1-ethyl-3(3-dimethyl aminopropyl) carbodiimide(EDC) were prepared as a potential biocompatible material for tissue engineering. HA membranes having different mechanical properties were synthesised by varying degree of the mole ratio of lactide to HA, EDC concentration, and crosslinking temperature. HA membranes were degradable in water solution and the degradation became slower with the increasing mole ratio of lactide to HA. HA membranes were sterilized using ethylene oxide gas and extracted with cell culture medium for 24 h at $37^{\circ}C$ and 200 rpm. Cytotoxicity of the extract was tested using NIH/3T3 mouse embryo fibroblast as a model cell. Growth inhibition was not observed in the extracts of HA membranes with the mole ratios of lactide to HA, 5 or 10, and 10% EDC concentration, however 11% of growth inhibition was observed in the extract with the mole ratio of 13. Growth inhibition was not observed in the extracts of HA membranes prepared with 5% EDC or 10% EDC and the mole ratio of lactide to HA, 10, however 12% of growth inhibition was observed in the extract with 20% EDC. Cytotoxicity was not observed in the extracts of HA membranes prepared at varying crosslinking temperatures, $15^{\circ}C,\;25^{\circ}C,\;and\;28^{\circ}C$ with the mole ratio of lactide to HA, 10 and 10% EDC.

Transcriptional Properties of the BMP, $TGF-\beta$, RTK, Wnt, Hh, Notch, and JAK/STAT Signaling Molecules in Mouse Embryonic Stem Cells

  • Rho Jeung-Yon;Bae Gab-Yong;Chae Jung-Il;Yu Kweon;Koo Deog-Bon;Lee Kyung-Kwang;Han Yong-Mahn
    • Reproductive and Developmental Biology
    • /
    • v.30 no.2
    • /
    • pp.143-156
    • /
    • 2006
  • Major characteristics of embryonic stem cells (ESCs) are sustaining of sternness and pluripotency by self-renewal. In this report, transcriptional profiles of the molecules in the developmentally important signaling pathways including Wnt, BMP4, $TGF-\beta$, RTK, Hh, Notch, and JAK/STAT signaling pathways were investigated to understand the self-renewal of mouse ESCs (mESCs), J1 line, and compared with the NIH3T3 cell line and mouse embryonic fibroblast (MEF) cells as controls. In the Wnt signaling pathway, the expression of Wnt3 was seen widely in mESCs, suggesting that the ligand may be an important regulator for self-renewal in mESCs. In the Hh signaling pathway, the expression of Gli and N-myc were observed extensively in mESCs, whereas the expression levels of in a Shh was low, suggesting that intracellular molecules may be essential for the self-renewal of mESCs. IGF-I, IGF-II, IGF-IR and IGF-IIR of RTK signaling showed a lower expression in mESCs, these molecules related to embryo development may be restrained in mESCs. The expression levels of the Delta and HESS in Notch signaling were enriched in mESCs. The expression of the molecules related to BMP and JAK-STAT signaling pathways were similar or at a slightly lower level in mESCs compared to those in MEF and NIH3T3 cells. It is suggested that the observed differences in gene expression profiles among the signaling pathways may contribute to the self-renewal and differentiation of mESCs in a signaling-specific manner.

Inhibition of Cancer Cell Migration by Compounds from Garlic Extracts (마늘추출물에 의한 암세포의 이동 저하)

  • Kim, Eun-Kyoung;Yun, Sung-Ji;Ha, Jung-Min;Jin, In-Hye;Kim, Young-Whan;Kim, Sun-Gun;Park, Da-Jung;Choi, Young-Whan;Yun, Sik;Kim, Chi-Dae;Bae, Sun-Sik
    • Journal of Life Science
    • /
    • v.21 no.6
    • /
    • pp.767-774
    • /
    • 2011
  • Cell migration plays a fundamental role in cancer cell invasion and metastasis as well as in many physiological responses. Here, we screened four different sources of garlic - water extract of normal and black garlic, as well as dried normal and black garlic - for the identification of anti-invasive and anti-metastatic activity on cancer cells. Inhibition of cancer cell migration was observed in the hexane extract of dried-garlic. Inhibitory activity was further purified to near homogeneity by thin layer chromatography and named $\b{i}$nhibitor of $\b{c}$ancer $\b{m}$etastasis from garlic #27 (ICMG-27). ICMG-27 completely blocked insulin-like growth factor-1 (IGF-1)-induced OVCAR-3 cell migration at 6 ${\mu}g/ml$. ICMG-27 completely blocked IGF-1-induced OVCAR-3 and NIH-3T3 cell migration whereas IGF-1-induced mouse embryonic fibroblast (MEF) cell migration was not affected byICMG-27. ICMG-27 inhibited all the tested IGF-1-induced cancer cell migration such as OVCAR-3, SKOV-3, and MDA-MB-231 cells. Finally, ICMG-27 could inhibit IGF-1-, lysophosphatidic acid (LPA)-, sphingosine-1-phosphate (S1P)-, leukotriene B4 (LTB4)-, and angiotensin II (AngII)-induced OVCAR-3 cell migration. These results indicate that ICMG-27 inhibits cancer cell migration by blocking essential steps in many agonists-induced cancer cell migrations. Unveiling an anti-invasive mechanism of ICMG-27 on cancer cells will provide a basis for cancer therapy.

Stigmalactam from Orophea Enterocarpa Induces Human Cancer Cell Apoptosis Via a Mitochondrial Pathway

  • Banjerdpongchai, Ratana;Wudtiwai, Benjawan;Pompimon, Wilart
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10397-10400
    • /
    • 2015
  • Stigmalactam, an aristolactam-type alkaloid extracted from Orophea enterocarpa, exerts cytotoxicity against several human and murine cancer cell lines, but the molecular mechanisms remain elusive. The aims of this study were to identify the mode and mechanisms of human cancer cell death induced by stigmalactam employing human hepatocellular carcinoma HepG2 and human invasive breast cancer MDA-MB-231 cells as models, compared to normal murine fibroblasts. It was found that stigmalactam was toxic to HepG2 and MDA-MB-231 cells with $IC_{50}$ levels of $23.0{\pm}2.67{\mu}M$ and $33.2{\pm}4.54{\mu}M$, respectively, using MTT assays. At the same time the $IC_{50}$ level towards murine normal fibroblast NIH3T3 cells was $24.4{\pm}6.75{\mu}M$. Reactive oxygen species (ROS) production was reduced in stigmalactam-treated cells dose dependently after 4 h of incubation, indicating antioxidant activity, measured by using 2',7',-dichlorohydrofluorescein diacetate and flow cytometry. Caspase-3 and caspase-9 activities were increased in a dose response manner, while stigmalactam decreased the mitochondrial transmembrane potential dose-dependently in HepG2 cells, using 3,3'-dihexyloxacarbocyanine iodide and flow cytometry, indicating mitochondrial pathway-mediated apoptosis. In conclusion, stigmalactam from O. enterocarpa was toxic to both HepG2 and MDA-MB-231 cells and induced human cancer HepG2 cells to undergo apoptosis via the intrinsic (mitochondrial) pathway.

Development and Characterization of a Specific Anti-Caveolin-1 Antibody for Caveolin-1 Functional Study in Human, Goat and Mouse

  • Ke, Meng-Wei;Jiang, Yan-Nian;Li, Yi-Hung;Tseng, Ting-Yu;Kung, Ming-Shung;Huang, Chiun-Sheng;Cheng, Winston Teng-Kuei;Hsu, Jih-Tay;Ju, Yu-Ten
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.6
    • /
    • pp.856-865
    • /
    • 2007
  • Caveolin-1 of the caveolin family of proteins regulates mammary gland development and has been shown to play a contradictory role in breast tumor progression. A specific anti-Caveolin-1 antibody will be useful for functional study of Caveolin-1 in different tissues. In this study, we generated a rabbit polyclonal antibody that specifically recognizes the N-terminal amino acids 50-65 of Caveolin-1. This polyclonal antibody specifically reacted with Caveolin-1 extracted from cells of different species, including human epithelial A431 cells, goat primary mammary epithelial cells and mice fibroblast NIH 3T3 cells, by Western blotting. Endogenous Caveolin-1 protein expressing in cells and normal human tissues was detected by this polyclonal antibody using immunocytofluorescent and immunohistochemical staining, respectively. Furthermore, an apparent decrease in Caveolin-1 expression in tumorous breast and colon tissues was detected by this polyclonal antibody. In conclusion, we have identified amino acids 50-65 of Caveolin-1, which contains an epitope that is specific to Caveolin-1 and is conserved in the human, goat and mouse. In future, this anti-Caveolin-1 antibody can be used to examine the progression of breast and colon cancers and to study functions of Caveolin-1 in human, goat and mouse cells.

Interaction of Different Types of Cells on Poly(L-lactide-co-glycolide) Surface with Wettability Chemogradient

  • Gilson Khang;John M. Rhee;Lee, Jin-Ho;Lee, Ilwoo;Lee, Hai-Bang
    • Macromolecular Research
    • /
    • v.8 no.6
    • /
    • pp.276-284
    • /
    • 2000
  • A wettability chemogradient on poly(L-lactide-co-glycolide) (PLGA) films was prepared by treating the films in air with corona from a knife-type electrode whose power increases gradually along the sample length. The PLGA surfaces oxidized gradually with the increasing corona power, and the wettability chemogradient was created on the surfaces as evidenced by the measurement of water contact angles and electron spectroscopy for chemical analysis. The wettability chemogradient PLGA surfaces were used to investigate the interaction of four different types of cells such as hepatoma (Hep G2), osteoblast (MG 63), bovine aortic endothelial (CPAE), and fibroblast (NIH/3T3) cells in terms of the surface hydrophilicity/hydrophobicity of PLGA. The cells adhered and grown on the chemogradient surface along the sample length were counted and observed by scanning electron microscopy. It was observed that the cells were adhered, spread, and grown more onto the positions with moderate hydrophilicity of the wettability chemogradient PLGA surface than the more hydrophobic or hydrophillic positions, regardless of the cell types used. The maximum adhesion and growth of the cells appeared at around water contact angles of 53~55°. This result seems closely related with the serum protein adsorption on the surface; the serum proteins were also adsorbed more onto the positions with moderate hydrophilicity of the wettability chemogradient surface. It seems that the wettability plays important roles for cell adhesion, spreading and growth on the PLGA surface. The surface modification technique used in this study may be applicable tothe area of tissue engineering for the improvement of tissue compatibility of films- or scaffold-type substrates.

  • PDF