Interaction of Different Types of Cells on Poly(L-lactide-co-glycolide) Surface with Wettability Chemogradient

  • Gilson Khang (Department of Polymer Science and Technology, Chonbuk National University) ;
  • John M. Rhee (Department of Polymer Science and Technology, Chonbuk National University) ;
  • Lee, Jin-Ho (Department of Polymer Science and Engineering, Hannam University) ;
  • Lee, Ilwoo (Department of Neurosurgery, Catholic University Medical College) ;
  • Lee, Hai-Bang (Biomaterials Laboratory, Korea Research Institute of Chemical Technology)
  • Published : 2000.12.01

Abstract

A wettability chemogradient on poly(L-lactide-co-glycolide) (PLGA) films was prepared by treating the films in air with corona from a knife-type electrode whose power increases gradually along the sample length. The PLGA surfaces oxidized gradually with the increasing corona power, and the wettability chemogradient was created on the surfaces as evidenced by the measurement of water contact angles and electron spectroscopy for chemical analysis. The wettability chemogradient PLGA surfaces were used to investigate the interaction of four different types of cells such as hepatoma (Hep G2), osteoblast (MG 63), bovine aortic endothelial (CPAE), and fibroblast (NIH/3T3) cells in terms of the surface hydrophilicity/hydrophobicity of PLGA. The cells adhered and grown on the chemogradient surface along the sample length were counted and observed by scanning electron microscopy. It was observed that the cells were adhered, spread, and grown more onto the positions with moderate hydrophilicity of the wettability chemogradient PLGA surface than the more hydrophobic or hydrophillic positions, regardless of the cell types used. The maximum adhesion and growth of the cells appeared at around water contact angles of 53~55°. This result seems closely related with the serum protein adsorption on the surface; the serum proteins were also adsorbed more onto the positions with moderate hydrophilicity of the wettability chemogradient surface. It seems that the wettability plays important roles for cell adhesion, spreading and growth on the PLGA surface. The surface modification technique used in this study may be applicable tothe area of tissue engineering for the improvement of tissue compatibility of films- or scaffold-type substrates.

Keywords

References

  1. in Encyclopedic Handbook of Biomaterial and Bioengineering v.2 The use of PLA-PGA Poly-mers in Orthoperdics C. M. Agrawal;G. G. Miederauer;D. M. Micallerf;K. A. Athanasiou
  2. J. Oral Maxillo-fac. Surg. v.45 no.594 J. O. Hollinger; J. P. Schmitz
  3. J. Bioeng. v.1 no.231 D. F. Wlliams;E. Mort
  4. J. Bone Joint Surg. v.73-A no.1 O. Bostman
  5. Tissue Engineering v.1 no.241 C. M. Agrawal;P. E. Gabriele;G. Miederauer;K.A.Athanasiou
  6. Biotech. Bioeng. v.38 no.145 L. G. Cima; D. E. Ingber; J. P. Vacanti;R.Langer
  7. Biomaterials v.14 no.323 A. G. Mikos;G. Sarakinos;S.M. Leite;J.P.Vacanti;R. Langer
  8. Biomaterials v.14 no.270 H.L.Wald;G. Sarakinis;M.D.Lyman;A.G.Mikos;J.P.Vacanti;R.Langer
  9. J. Biomed. Mater. Res. v.27 no.183 A. G. Mikos;Y. Bao;L.G.Cima;D.E.Ingber;J.P.Vacanti;R.Langer
  10. J. Biomed. Mater. Res. v.34 no.87 G.G.Giodano;R.C. Thomsom;S.L.Ishaug;A.G.Mikos
  11. J. Biomed. Mater. Res. v.34 no.211 D. A. Grande;C. Halberstadt;G. Naughton;R.Schwartz;R. Manji
  12. Biomaterials v.11 no.679 H. T. Wang;H.Palmer;R.J. Linhardt;D. R. Flana-gan;E.Schmitt
  13. J. Control. Release v.37 no.1139 A. Carrio;G.Schwach;J.Coudane;M.vert
  14. J. Con-trol. Release v.37 no.83 C. Schmidt;R.Wenz;B. Nies;F. Moll
  15. korea Polymer J. v.7 no.79 J. C. Cho;G. khang;J.M.Rhee;Y.S.Kim;J.S.Lee;H.B.Lee
  16. Bio-Med. Mater. Eng. v.9 no.49 G. Khang;J.C.Cho;J.W.Lee;J.M.Rhee;H.B. Lee
  17. Bio-Med. Mater. Eng. v.5 no.245 G. Khang;H.B.Lee;J.B.Park
  18. Bio-Med. Mater. Eng. v.5 no.278 G. Khang;H.B.Lee;J.B.Park
  19. Bio-Med. Mater. Eng. v.5 no.259 G. khang;B.J.Jeong;H.B.Lee;J.B.Park
  20. Bio-Med. Mater. Eng. v.7 no.357 G.Khang;J.H.Jeon;J.W.Lee;S.C.Cho;H.B.Lee
  21. J. Colloid Interface. Sci. v.152 no.563 J.H.Lee;H.Kim;G.Khang;H.B.Lee;M.S.Jhon
  22. in Encyclo-pedic Handbook of Biomaterials and Bioengineering:Part A. Materials v.1 Biocompatibility of Solod Substrates based on Surface Wettability H.B. Lee;J.H. Lee;D.L.Wise;D. J.Trantolo;D.E.Altobelli;M.J.Yaszemski.;J.D.Gresser;E.R.Schwartz(Eds.)
  23. J. Biomater. Sci. v.4 no.467 J.H. Lee;H.B.Lee
  24. J. Colloid Interface Sci. v.178 no.757 B.J.Jeong;J.H.Lee;H.B.Lee
  25. J. Biomed. Mater. Res. v.34 no.105 J. H. Lee;B. J. Jeong;H. B. Lee
  26. Makromol. Chem. v.118 no.571 J.H. Lee;G.khang;J.W.Lee;H.B.Lee
  27. Biomater. Res. v.1 no.1 G. Khang;J.W.Lee;J.H.Jeon;J.H.Lee;H.B.Lee
  28. Bio-materials v.18 no.351 J.H.Lee;J.W.Lee;G.Khang;H.B. Lee
  29. J. Biomed. Mater. Res. v.41 no.304 J.H.Lee;H.B.Lee
  30. J. Biomed. Mater. Res. v.40 no.180 J.H.Lee;G.Khang;J.W. Lee;H.B. Lee
  31. J. Biomater. Sci. v.9 no.801 Y. Iwasaki;K. Ishihara;N.Nakabayashi;G. Khang
  32. J. Colloid Interface Sci. v.205 no.323 J. H. Lee;G. Khang;J.W. Lee;H.B.Lee
  33. Biom-aterials v.6 no.403 P.B. van Wachem;T. Beugeling;J. Feijen;A. bantjes;J.P.Detmers;W.G.van Aken
  34. Biomaterials v.8 no.323 P.B. van Wachem;A.H.Hogt;T.Beugeling
  35. in Polymers in Medicine Ⅱ Cell Attachment to Various Polymer Surface Y.Tamada;Y.Ikada;E.Cheillin;P.Giusti;C.Migliaresl;L.Nicolas(Eds.)
  36. J. Colloid Interface Sci. v.155 no.334 Y.Tamada;Y.Ikada
  37. J. Biomed. Mater. Res. v.28 no.783 Y.Tamada;Y.Ikada
  38. J. Biomed. Mater. Res. v.28 no.351 J.H.Lee;J.Kopecek;J.D.Andrade
  39. Biomaterials v.16 no.1057 J.G.Steels;B.A.Dalton;G.Johnson;P.A.Underwood
  40. J. Cell Sci. v.93 no.641 P.A.Underwood;F.A.Bennett
  41. J. Biomed. Mater.Res. v.26 no.861 J.G.Steels;G.Johnson;P.A.Underwood
  42. J. Cell Physiol. v.113 no.289 R.Hass;L.A.Culp
  43. J. Cell. Sci. v.71 no.51 P.Knox
  44. J. Biom-ater. Sci. v.6 no.511 J. G.Steels;G. Johnson;G.Griesser
  45. Exp. Cell. Res. v.205 no.311 P.A.Underwood;F.A.Bennett