• Title/Summary/Keyword: NIGHT ARTIFICIAL LIGHT

Search Result 43, Processing Time 0.016 seconds

Growth and Contents of Anthocyanins and Ascorbic Acid in Lettuce as Affected by Supplemental UV-A LED Irradiation with Different Light Quality and Photoperiod (상이한 광질 및 광주기 하에서 UV-A LED 부가 조사가 상추의 생장, 안토시아닌 및 아스코르빈산 함량에 미치는 영향)

  • Kim, Yong Hyeon;Lee, Jae Su
    • Horticultural Science & Technology
    • /
    • v.34 no.4
    • /
    • pp.596-606
    • /
    • 2016
  • The growth and contents of anthocyanins and ascorbic acid in lettuce(Lactuca sativa L., 'Jeokchima') as affected by supplemental UV-A LED irradiation under different light quality and photoperiod conditions were analyzed in this study. Five light qualities, namely B (blue LED), R (red LED), BUV (blue LED+UV-A LED), RUV (red LED+UV-A LED) and Control (white fluorescent lamps) with photoperiods of 12/12 hours (day/night), 16/8 hours, or 20/4 hours were provided to investigate the effects of light quality and photoperiod on the growth and accumulation of anthocyanins and ascorbic acid in lettuce leaves. As measured 28 days after transplanting, the number of leaves, leaf length, leaf width, leaf area, shoot fresh weight and dry weight of lettuce were significantly affected by light quality and photoperiod. The number of leaves, leaf length, leaf width, leaf area, shoot fresh weight and dry weight of lettuce grown under R treatment increased with increasing light period. By contrast, leaf development was inhibited, but chlorophyll content increased, under B treatment. Supplemental UV-A irradiation significantly decreased leaf length, leaf width, leaf area and shoot fresh weight. Anthocyanins in lettuce increased significantly with decreasing dark period under B treatment. A synergistic effect of supplemental UV-A LED irradiation on anthocyanins accumulation was found for lettuce leaves grown under R treatment but not B treatment. Ascorbic acid in lettuce was greatly affected by photoperiod. Ascorbic acid content at BUV and RUV treatments increased by 20-30% compared to without UV-A LED irradiation. From these results, it was concluded that growth and contents of anthocyanins and ascorbic acid in lettuce are significantly affected by supplemental UV-A LED irradiation. The results obtained in this study will be informative for efforts to improve the nutritional value of leafy vegetables grown in plant factories.

Effect of Air Temperature on Growth and Phytochemical Content of Beet and Ssamchoo (온도처리가 비트와 쌈추의 생육과 생리활성 물질 함량에 미치는 영향)

  • Lee, Sang Gyu;Choi, Chang Sun;Lee, Hee Ju;Jang, Yoon Ah;Lee, Jun Gu
    • Horticultural Science & Technology
    • /
    • v.33 no.3
    • /
    • pp.303-308
    • /
    • 2015
  • The consumption of leaf vegetables has been steadily increasing in Korea. Leaf vegetables are used for "Ssam (vegetable wrap-up), eaf vegetables has been steadily increasing in Korea. Leaf vegetables are used for asoned condiments inside several layers of young vegetable leaves. This study investigated the effect of air temperature on the growth and phytochemical contents of beet (Beta vulgaris L.) and Ssamchoo (Brassica lee L. ssp. namai) grown in a closed-type plant factory system where fluorescent lamps were used as an artificial light source. Seeds of beet and Ssamchoo were sown in a peat-lite germination mix. The roots of 20-day-old seedlings were washed, and the seedlings were planted on a styrofoam board and grown in hydroponic beds for 25 days under fluorescent light. Plants were exposed to one of three different air temperature regimes (20, 25 and $30^{\circ}C$ during the day combined with $18^{\circ}C$ during the night), which were monitored with a sensor at 30 cm above the plant canopy. Increased plant height and leaf area were observed in beet at $25^{\circ}C$ and $30^{\circ}C$ compared to $20^{\circ}C$. For Ssamchoo, the greatest plant height, leaf area, fresh weight and dry weight were obtained at $20^{\circ}C$. Ascorbic acid content of beet and Ssamchoo leaves were highest at $30^{\circ}C$. In beet, total polyphenol and flavonoid contents were higher at $20^{\circ}C$ (42.4, $197.0mg{\cdot}g^{-1}DW$) and $25^{\circ}C$ (46.9, $217.0mg{\cdot}g^{-1}DW$) than $30^{\circ}C$ (22.4, $88.0mg{\cdot}g^{-1}DW$). In Ssamchoo, total polyphenol and flavonoid contents were also higher at $20^{\circ}C$ (79.2, $268.2mg{\cdot}g^{-1}DW$) and $25^{\circ}C$ (66.3, $258.3mg{\cdot}g^{-1}DW$), respectively, than $30^{\circ}C$ (53.7, $134.7mg{\cdot}g^{-1}DW$). Hence, the optimum temperature appears to be $20^{\circ}C$ for growing both beet and Ssamchoo in a closed-type plant factory system with fluorescent light.

Properties of Temperature Reduction of Cooling Asphalt Pavements Using High-Reflectivity Paints (고반사 도료를 사용한 차열성 아스팔트 도로포장의 온도저감특성)

  • Hong, Chang Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.317-327
    • /
    • 2013
  • Air pollution and artificial heat of urban areas have caused the urban heat island in which asphalt pavements absorb solar heat during the daytime and release the heat at night. Hence, in order to improve the environment of urban areas, it is necessary to examine cooling pavements that can reduce heat on road pavements in urban areas. The application of temperature insulation paints on road pavements require to reduce black brightness for visibility, to increase the reflection rate of infrared light and minimize the reflection rate of visible light. In the study, one part of Acrylic-emulsion was used as a main binder, and the changes in black brightness and the changes of addition ratio (0%, 15%, 30%) of hollow ceramics, as well as kinds of paints (carbon black pigment, mixed mineral pigment) were selected as the main experimental factors. The performance of temperature reduction of cooling pavements was analyzed through the reflection rate of spectrum, the reflection rate of solar heat, and the lamp test. Abrasion resistance, UV accelerated weather resistance, and sliding resistance were tested in real situations. In addition, the performance of heat reduction of testing pavements covered with high-reflection paints was analyzed by using an infrared camera. As the test results, when using mixed mineral paints and hollow ceramic of 30%, the reflection rate of spectrum was 43% in the area of near-infrared ray and 17% in the area of visible light at black brightness of $L^*$=42.89 and the reflection rate of solar heat was 27.5%. Total color difference was ${\Delta}E$=0.27 in the test of UV Accelerated Weather Resistance, indicating almost no changes in color. BPN was more than 53 when scattering #2 and #4 silica sand of more than $0.12kg/m^2$. In Taber's abrasion resistance test, abrasion loss was up to 86.4mg at 500 rotations. The performance of heat reduction was evaluated using an infrared camera at the test section applying high-reflection paints to asphalt pavements, in which the results showed that the temperature was reduced by $12.7^{\circ}C$ on CI-30-40 cooling pavements ($L^*$=38.76) and by $14.2^{\circ}C$ on CI-30-60 cooling pavements ($L^*$=57.12).