• Title/Summary/Keyword: NI method

Search Result 1,889, Processing Time 0.03 seconds

Magenetic Properties of Co, Ni and Ca Substituted Mn-Zn Ferrite (Co, Ni 및 Ca를 첨가한 Mn-Zn 페라이트의 자기적 성질)

  • 하태욱;이정식
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.1
    • /
    • pp.15-20
    • /
    • 1995
  • We have prepared 20 kinds of Mn-Zn ferrites as content of CaO(0.1 mol%), NiO(0.0~0.60 mol%) and CoO(0.0~0.8 mol%) adding by the coprecipitation method and studied the magnetic properties as content of CaO, NiO and CoO adding. Initial permeability decrease as the content of NiO and CoO adding increases, while Curie tem~ perature increase as the content of NiO and CoO adding increases. $(H_{c})$, $(B_{s})$ and $(W_{h})$ increase as content of NiO adding increases.

  • PDF

Effect of Surface Treatment on the Formation of NiO Nanomaterials by Thermal Oxidation

  • Hien, Vu Xuan;Heo, Young-Woo
    • Applied Science and Convergence Technology
    • /
    • v.25 no.6
    • /
    • pp.149-153
    • /
    • 2016
  • Thermal oxidation has significant potential for use in synthesizing metal-oxide nanostructures from metallic materials. However, this method has limited applicability to the synthesis of multi-morphology NiO from Ni foil. Techniques consisting of mechanical and chemical approaches were used to pre-treat the Ni foil (prior to oxidation) to promote the formation of nanowires and nanoplates on the NiO layer. These morphologies were realized on the Ni foils scratched by sand paper and a knife, respectively, and subsequently heat-treated at $500^{\circ}C$ for 24 h. Small nanowires (diameter: <10 nm) formed on the Ni foil treated by absolute $HNO_3$ and then oxidized at $500^{\circ}C$ for 24 h. The formation of various morphologies (on the pre-treated Ni foil), which differ from that formed in the case of pristine Ni foil after oxidation, may be attributed to the surface melting phenomenon that occurs during the nucleation process.

Preparation of Nickel Hexacyanoferrate Ion Exchanger for Electrochemical Separation of Cations (양이온의 전기화학적 분리를 위한 페리시안니켈 이온교환체의 제조에 관한 연구)

  • Lee, Ji Hyun;Hwang, Young Gi
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.52-57
    • /
    • 2010
  • Although chemical sedimentation and ion exchange are usually applied to the treatment of heavy metal ions and radioactive cations, they have some serious disadvantages like a great consumption of chemicals, the disposal of valuable metals, and the secondary pollution of soil by the solid-waste. The advanced countries recently have studied the electrochemical ion exchange, combined electrochemical reduction and ion exchange, for the development of the alternative technique. This study has been performed to investigate the optimum condition for the preparation of the nickel hexacyanoferrate (NiHCNFe) which is an electrochemical ion exchanger. NiHCNFe film was deposited on the surface of nickel plate by chemical method or electrochemical method. The morphology and composition of NiHCNFe were observed by SEM and EDS, respectively. The peak current density of NiHCNFe was measured from the cyclic voltammograms of the continuous oxidation-reduction reaction in a parallel plane ion exchange electrode reactor. It was found that the chemical preparation method was better than the electrochemical method. The concentrated NiHCNFe was apparently deposited on nickel plate when dipping in the preparing solution for 118 h, especially. It also had a best durable performance as an ion exchange electrode.

Solid-state Reactions in Ni/Si Multilayered Films, Investigated by Optical and Magneto-optical Spectroscopy

  • Lee, Y. P.;Kim, S. M.;Y. V. Kudryavtsev;Y. N. Makogon
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.7-9
    • /
    • 2003
  • Solid-state reactions in Ni/Si multilayered films (MLF) with an overall stoichiometry of $Ni_2Si$, NiSi and $NiSi_2$, induced by ion-beam mixing (IBM) and thermal annealing, were studied by using spectroscopic ellipsometry and magneto-optical spectroscopy as well as x-ray diffraction (XRD). The mixing was performed with Ar+ ions of an energy of 80 keV and a dose of $1.5 x\times10^{16}$ $Ar^+$/$\textrm{cm}^2$. It was shown that the IBM induces structural changes in the Ni/Si MLF, which cannot be detected by XRD but are confidently recognized by the optical method. A thermal annealing at 673 K of the Ni/Si MLF with an overall stoichiometry of NiSi and $NiSi_2$ causes formation of the first η -NiSi phase. The first trace for $NiSi_2$ phase on the background of NiSi one was detected by XRD after an annealing at 1073 K while, according to the optical results, $NiSi_2$ turns out be the dominant phase for the annealed Ni/Si MLF with an overall stoichiometry of $NiSi_2$.

Preparation of Ni-GDC Powders by the Solution Reduction Method Using Hydrazine and Its Electrical Properties (하이드라진을 이용한 용액환원법에 의한 Ni-GDC 미분말 합성과 전기적 특성)

  • Kim, Sun-Jung;Kim, Kang-Min;Cho, Pyeong-Seok;Cho, Yoon-Ho;Lee, Choong-Yong;Park, Seung-Young;Kang, Yun-Chan;Lee, Jong-Heun
    • Korean Journal of Materials Research
    • /
    • v.18 no.12
    • /
    • pp.660-663
    • /
    • 2008
  • Ni-GDC (gadolinia-doped ceria) composite powders, the anode material for the application of solid oxide fuel cells, were prepared by a solution reduction method using hydrazine. The distribution of Ni particles in the composite powders was homogeneous. The Ni-GDC powders were sintered at $1400^{\circ}C$ for 2 h and then reduced at $800^{\circ}C$ for 24 h in 3% $H_2$. The percolation limit of Ni of the sintered composite was 20 vol%, which was significantly lower than these values in the literature (30-35 vol%). The marked decrease of percolation limit is attributed to the small size of the Ni particles and the high degree of dispersion. The hydrazine method suggests a facile chemical route to prepare well-dispersed Ni-GDC composite powders.

Impurity Pick-Up for the Preparation of NiCuZn Ferrite Powder Using Ball Milling Process (NiCuZn Ferrite 분말제조에 있어서 Ball Mill 분쇄 공정 중에 혼입되는 불순물의 함량)

  • 고재천;류병환
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.4
    • /
    • pp.217-222
    • /
    • 1999
  • The pick up impurity was studied for preparing the NiCuZn ferrite powder by a ball milling method that usually uses in the industrial ceramic process. The raw materials of NiO, CuO, ZnO, and $Fe_2O_3$ powder were weighted according to various spinel composition and mixed for 18 hrs by a wet ball milling method after that the slurry was followed by spray dried and calcined at $700^{\circ}C$ 3 hrs. The calcined NCZF powder was finally ball milled during 65 hrs as same method. The stainless steel ball and jar are used as mixing and milling equipment and the solid concentration of the slurry was 25 vol%. The impurities, stainless steel pickup, were effected by the composition of raw materials especially iron oxide, nickel oxide in the mixing process and by the rate of calcine of NiCuZn ferrite in final milling process. The empirical equation of stainless steel pickup was driven in the wet ball milling system. Finally, the composition of NiCuZn ferrite could be controlled by the empirical equation.

  • PDF

Electrochemical Properties of LiNi1-yMyO2(M=Zn2+, Al3+, and Ti4+ Synthesized by Combustion Method (연소법으로 합성한 LiNi1-yMyO2(M=Zn2+, Al3+, and Ti4+ 전기화학적 특성)

  • Kwon, Ikhyun;Song, Myoungyoup
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.4
    • /
    • pp.276-281
    • /
    • 2005
  • $LiNi_{1-y}M_{y}O_{2}(M=Zn^{2+},\;Al^{3+},\;and\;Ti^{4+},\;0.000\{\le}y{\le}0.100)$ were synthesized by the combustion method by calcining in $O_{2}$ stream at $750^{\circ}C$ for 36 h. XRD analyses, observation by FE-SEM and measurement of the variation of discharge capacity with the number of cycles were carried out. The composition $LiNi_{0.99}M_{0.01}O_{2}(M=Zn^{2+},\;Al^{3+},\;and\;Ti^{4+})$ of all the compositions showed relatively good electrochemical properties. $LiNi_{0.99}M_{0.01}O_{2}$ exhibited poor crystallinity and $LiNi_{0.99}M_{0.01}O_{2}$ showed the cation mixing of large fraction. $LiNi_{0.99}M_{0.01}O_{2}$ with improved cycling performance showed good crystallinity and the cation mixing of small fraction.

Study on the Synthesis by Milling and Solid-State Reaction Method and Electrochemical Properties of LiNiO2 (기계적 혼합과 고상법에 의한 LiNiO2의 합성과 전기화학적 특성)

  • Kim, Hunuk;Youn, SunDo;Lee, Jaecheon;Park, HyeRyoung;Song, Myoungyaup
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.5 s.276
    • /
    • pp.319-325
    • /
    • 2005
  • [ $LiNiO_2$ ] was synthesized by the solid-state method after mixing $LiOH{\cdot}H_2O$ and $Ni(OH)_2$ with SPEX mill. The optimum condition for the synthesis of $LiNiO_2$ was the calcination at $750^{\circ}C$ for 30h in $O_2$ stream after milling for 1 h. The $LiNiO_2$ synthesized under this condition showed relatively large value of $I_{003}/I_{104}$ and relatively small value of R-factor. When $LiNiO_2$ was cycled in 2.7$\~$4.15 V at 0.1C-rate, the first discharge capacity was not very large (145.8 mAh/g) but it showed good cycling performance. When $LiNiO_2$ was cycled in 2.7$\~$4.2 V at 0.1C-rate, the first discharge capacity was large but ,it showed poor cycling performance probably because of the transition of H2 hexagonal structure to H3 hexagonal structure. In addition, when $LiNiO_2$ was cycled in 1.0$\~$4.8 V at 1/24C- rate, the first discharge capacity was very large (257.7 mAh/g) and the discharge capacity increased with the number of cycles.

Synthesis of (Ni,Mg)Al2O4 Ceramic Nano Pigment by a Polymerized Complex Method (착체중합법을 이용한 (Ni,Mg)Al2O4 Cyan 나노 무기안료 합성)

  • Son, Bo-Ram;Yoon, Dea-Ho;Han, Kyu-Sung;Cho, Woo-Suk;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.3
    • /
    • pp.195-200
    • /
    • 2013
  • Here, we report preparation of cyan ceramic nano-pigment for inkjet printing and the Ni substitutional effects on the cyan color. $MgAl_2O_4$ was selected as the crystalline host network for the synthesis of nickel-based cyan ceramic nano-pigments. Various compositions of $Ni_xMg_{1-x}Al_2O_4$ ($0{\leq}x{\leq}1$) powders were prepared using the polymerized complex method. The powder was then preheated at $400^{\circ}C$ for 5 h and finally calcined at $1000^{\circ}C$ for 5 h. XRD patterns of $Ni_xMg_{1-x}Al_2O_4$ showed a single phase of the spinel structure in all the compositions. The particle sizes ranged from 20 to 50 nm in TEM observations. The characteristics of the color tones of $Ni_xMg_{1-x}Al_2O_4$ were analyzed by UV-Visible spectroscopy and CIE $L^*a^*b^*$ measurement. CIE $L^*a^*b^*$ measurement results indicate that the pigment color changes from light cyan to deep cyan due to the decrease of the $a^*$ and $b^*$ values with an increase of an Ni substitutional amount. In addition, the thermal stability and the binding nature of $Ni_xMg_{1-x}Al_2O_4$ are also discussed using TG-DSC and FT-IR results respectively.

Catalytic Gasification of Mandarin Waste Residue using Ni/CeO2-ZrO2

  • Kim, Seong-Soo;Kim, Jeong Wook;Park, Sung Hoon;Jung, Sang-Chul;Jeon, Jong-Ki;Ryu, Changkook;Park, Young-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3387-3390
    • /
    • 2013
  • Catalytic gasification of mandarin waste residue was carried out using direct and indirect catalyst-contact methods for the first time. In the indirect method, non-catalytic reaction in a reactor was followed by catalytic upgrading of vapor product in another reactor. Two different catalysts, $Ni/{\gamma}-Al_2O_3$ and $Ni/CeO_2-ZrO_2$, were employed. $CeO_2-ZrO_2$ support was prepared using hydrothermal synthesis in supercritical water. The catalysts were characterized by $H_2$-temperature programmed reduction and Brunauer-Emmett-Teller analyses. Under the condition of equivalent ratio (ER) = 0, the indirect catalyst-contact method led to a higher gas yield than the direct method. Under ER = 0.2, the yield of biogas obtained over $Ni/CeO_2-ZrO_2$ was higher than that obtained over $Ni/{\gamma}-Al_2O_3$. Also, the coke formation of $Ni/CeO_2-ZrO_2$ was lower than that of $Ni/{\gamma}-Al_2O_3$. Such results were attributed to the higher reducibility and better lattice oxygen mobility of $Ni/CeO_2-ZrO_2$, which were advantageous for partial oxidation reaction.