• Title/Summary/Keyword: NHPP Model

Search Result 142, Processing Time 0.023 seconds

A Study of Generalized Model for Determining the Optimal Number of Minimal Repairs before Replacement Considering Inherent Availability (가용도를 고려한 교체전 최소수리횟수 결정모델에 관한 연구)

  • 강호신;조남호;유왕진
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.47
    • /
    • pp.47-55
    • /
    • 1998
  • This paper proposes a maintenance model considering the Inherent availability of certain requirement and two types of failures, repairable or irrepairable. In this model, the system is replaced in time when it doesn't meet the inherent availability requirement despite of all repairable failures; Otherwise it is replaced by the first irrepairable failure. Assuming that the j-th failure is repairable with probability ${\alpha}_j$, minimal repairs are performed for repairable failures between replacements. We drive the expected cost rate through the application of NHPP(Non-Homogeneous Poisson Process) in order to determine the optimal number $n^*$. The model includes some previous studies as special cases.

  • PDF

The Assessing Comparative Study for Statistical Process Control of Software Reliability Model Based on Logarithmic Learning Effects (대수형 학습효과에 근거한 소프트웨어 신뢰모형에 관한 통계적 공정관리 비교 연구)

  • Kim, Kyung-Soo;Kim, Hee-Cheul
    • Journal of Digital Convergence
    • /
    • v.11 no.12
    • /
    • pp.319-326
    • /
    • 2013
  • There are many software reliability models that are based on the times of occurrences of errors in the debugging of software. Software error detection techniques known in advance, but influencing factors for considering the errors found automatically and learning factors, by prior experience, to find precisely the error factor setting up the testing manager are presented comparing the problem. It is shown that it is possible to do asymptotic likelihood inference for software reliability models based on infinite failure model and non-homogeneous Poisson Processes (NHPP). Statistical process control (SPC) can monitor the forecasting of software failure and thereby contribute significantly to the improvement of software reliability. Control charts are widely used for software process control in the software industry. In this paper, we proposed a control mechanism based on NHPP using mean value function of logarithmic hazard learning effects property.

Reasonability of Logistic Curve on S/W (로지스틱 곡선을 이용한 타당성)

  • Kim, Sun-Il;Che, Gyu-Shik;Jo, In-June
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • The Logistic cone is studied as a most desirable for the software testing effort. Assuming that the error detection rate to the amount of testing effort spent during the testing phase is proportional to the current error content, a software-reliability growth model is formulated by a nonhomogeneous Poisson process. Using this model the method of data analysis for software reliability measurement is developed. After defining a software reliability, This paper discusses the relations between testing time and reliability and between duration following failure fixing and reliability are studied SRGM in several literatures has used the exponential curve, Railleigh curve or Weibull cure as an amount of testing effort during software testing phase. However, it might not be appropriate to represent the consumption curve for testing effort by one of already proposed curves in some software development environments. Therefore, this paper shows that a logistic testing- effort function can be adequately expressed as a software development/testing effort curve and that it gives a good predictive capability based on real failure data.

Comparative Evaluation on the Cost Analysis of Software Development Model Based on Weibull Lifetime Distribution (와이블 수명분포에 근거한 소프트웨어 개발모형의 비용 분석에 관한 비교 평가)

  • Bae, Hyo-Jeong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.193-200
    • /
    • 2022
  • In this study, the finite-failure NHPP software reliability model was applied to the software development model based on the Weibull lifetime distribution (Goel-Okumoto, Rayleigh, Type-2 Gumbe), which is widely used in the software reliability field, and then the cost attributes were compared and evaluated. For this study, failure time data detected during normal operation of the software system were collected and used, the most-likelihood estimation (MLE) method was applied to the parameter estimation of the proposed model, and the calculation of the nonlinear equation was solved using the binary method. As a result, first, in the software development model, when the cost of testing per unit time and the cost of removing a single defect increased, the cost increased but the release time did not change, and when the cost of repairing failures detected during normal system operation increased, the cost increased and the release time was also delayed. Second, as a result of comprehensive comparative analysis of the proposed models, it was found that the Type-2 Gumble model was the most efficient model because the development cost was lower and the release time point was relatively faster than the Rayleigh model and the Goel-Okumoto basic model. Third, through this study, the development cost properties of the Weibull distribution model were newly evaluated, and the analyzed data is expected to be utilized as design data that enables software developers to explore the attributes of development cost and release time.

POSSIBILITIES AND LIMITATIONS OF APPLYING SOFTWARE RELIABILITY GROWTH MODELS TO SAFETY-CRITICAL SOFTWARE

  • Kim, Man-Cheol;Jang, Seung-Cheol;Ha, Jae-Joo
    • Nuclear Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.129-132
    • /
    • 2007
  • It is generally known that software reliability growth models such as the Jelinski-Moranda model and the Goel-Okumoto's non-homogeneous Poisson process (NHPP) model cannot be applied to safety-critical software due to a lack of software failure data. In this paper, by applying two of the most widely known software reliability growth models to sample software failure data, we demonstrate the possibility of using the software reliability growth models to prove the high reliability of safety-critical software. The high sensitivity of a piece of software's reliability to software failure data, as well as a lack of sufficient software failure data, is also identified as a possible limitation when applying the software reliability growth models to safety-critical software.

Sensitivity analysis of software reliability metric estimator for Software Reliability Growth Models (신뢰성 성장모형에 대한 소프트웨어 신뢰성 메트릭 추정량의 민감도 분석)

  • Kim, Dae-Kyung
    • Journal of Korean Society for Quality Management
    • /
    • v.37 no.3
    • /
    • pp.33-38
    • /
    • 2009
  • When we estimate the parameters of software reliability models, we usually use maximum liklihood estimator(MLE). But this method is required a large data set. In particular, when we want to estimate it with small observed data such as early stages of testing, we give rise to the non-existence of MLE. Therefore, it is interesting to look into the influence of parameter estimators obtained using MLE. In this paper, we use two non-homogenous poisson process software reliability growth model: delayed S-shaped model and log power model. In this paper, we calculate the sensitivity of estimators about failure intensity function for two SRGMs respectively.

A Study of Software Quality Evaluation Using Error-Data (오류데이터를 이용한 소프트웨어 품질평가)

  • Moon, Wae-Sik
    • Journal of The Korean Association of Information Education
    • /
    • v.2 no.1
    • /
    • pp.35-51
    • /
    • 1998
  • Software reliability growth model is one of the evaluation methods, software quality which quantitatively calculates the software reliability based on the number of errors detected. For correct and precise evaluation of reliability of certain software, the reliability model, which is considered to fit dose to real data should be selected as well. In this paper, the optimal model for specific test data was selected one of among five software reliability growth models based on NHPP(Non Homogeneous Poission Process), and in result reliability estimating scales(total expected number of errors, error detection rate, expected number of errors remaining in the software, reliability etc) could obtained. According to reliability estimating scales obtained, Software development and predicting optimal release point and finally in conducting systematic project management.

  • PDF

Estimation of Product Reliability with Incomplete Field Warranty Data (불완전한 사용현장 보증 데이터를 이용한 제품 신뢰도 추정)

  • Lim, Tae-Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.4
    • /
    • pp.368-378
    • /
    • 2002
  • As more companies are equipped with data aquisition systems for their products, huge amount of field warranty data has been accumulated. We focus on the case when the field data for a given product comprise with the number of sales and the number of the first failures for each period. The number of censored items and their ages are assumed to be given. This type of data are incomplete in the sense that the age of a failed item is unknown. We construct a model for this type of data and propose an algorithm for nonparametric maximum likelihood estimation of the product reliability. Unlike the nonhomogeneous Poisson process(NHPP) model, our method can handle the data with censored items as well as those with small population. A few examples are investigated to characterize our model, and a real field warranty data set is analyzed by the method.

A Study on Optimal Software Maintenance Policies with Warranty Period (보증기기간을 고려한 최적 소프트웨어의 보전정책 연구)

  • Nam, Kyung-H.;Kim, Do-Hoon
    • Journal of Korean Society for Quality Management
    • /
    • v.39 no.2
    • /
    • pp.170-178
    • /
    • 2011
  • In general, a software fault detection phenonenon is described by a software reliability model based on a nonhomogeneous Poisson process(NHPP). In this paper, we propose a software reliability growth model considering the differences of the software environments in both the testing phase and the operational phase. Also, we consider the problem of determining the optimal release time and the optimal warranty period that minimize the total expected software cost which takes account of periodic software maintenance(e.g. patch, update, etc). Finally, we analyze the sensitivity of the optimal release time and warranty period based on the fault data observed in the actual testing process.

Optimal Release times of a Software Cost Model with Consideration of Various Costs

  • Lee Chong Hyung;Jang Kyu Beom;Park Dong Ho
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2005.06a
    • /
    • pp.251-257
    • /
    • 2005
  • Software system which is essential in operating the computer has gradually become an indispensable element in many aspects of our daily lives and an important factor in numerous systems. In recent years, software cost sometimes exceeds the cost of maintaining the hardware system. In addition to the cost necessary to develop the new software system and to maintain the system, the penalty costs incurred due to software failures are even more significant. In this paper, a cost model incorporating the warranty cost, debugging costto remove each fault detected in the software system, and delivery delay cost is developed. A software reliability model based on non-homogeneous Poisson process(NHPP) is established and the optimal software release policies to minimize the expected total software cost are discussed. Numerical examples are provided to illustrate the results.

  • PDF