HI37M3%/33

A2 MEDHO| CfE ATEQ0] MY HES

Z3geol ol

%1[
A% oat

=
e EM

Sensitivity analysis of software reliability metric estimator
for Software Reliability Growth Models

Kim Dae Kyung*

Chonbuk National University, Department of Statistics

Key Words : software reliability metric, MLE, SRGM, NHPP, Taylor approximation

Abstract

When we estimate the parameters of software reliability models, we usually use maximum liklihood estima-
tor(MLE). But this method is required a large data set. In particular, when we want to estimate it with small
observed data such as early stages of testing, we give rise to the non—existence of MLE. Therefore, it is interest-
ing to look into the influence of parameter estimators obtained using MLE. In this paper, we use two non-—
homogenous poisson process software reliability growth model : delayed S—shaped model and log power model.
In this paper, we calculate the sensitivity of estimators about failure intensity function for two SRGMs

respectively.

1. Introduction

Today, software products are rapidly increasing
but users are often not satisfied with software qual-
ity because of its failure. Software faults become the
cause of many failures. The consequences and im-
plications of failures can range from minor incon-
veniences to catastrophic loss of life and property.
Software plays a critical part in not only scientific
and business related enterprises, in daily life where
it runs devices such as cars, phones and television
sets. We get cash from an ATM, make a phone call,
and drive our cars. A typical cell phone now contains

t AR dkkim@chonbuk.ac.kr
This paper was supported by research funds of
Chonbuk National University in 2007

2 million lines of software code: by 2010 it will likely
have 10 times as many. General Motors Corporation
estimates that by then its cars will each have 100
million lines of code [2]. In the future, software will
be increased in size and be complicated in respects
of functions and structures. Since software is being
used to monitor and control both systems and human
life, there is a great demand for high —quality soft-
ware products,

Reliahility, failure rate and the residual number of
faults of software are the three most important met-
rics that provide a quantitative assessment of the
failure characteristics of devices. These are primary
concerns for both software developers and software
users. Failures are the result of a fault in the soft—
ware code. In practice, fault detection and correction
activity consumes a non negligible amount of time

34/20 WETS

Yo o3t 2ol M2y HEY WY SIYE 24

Ha

and resources (costs, human etc). The process of
finding and removing faults to improve the software
reliability can be described by a mathematical
relationship. Software reliability growth models
(SRGMs) have been used to estimate above software
reliability metrics. The most wisely used SRGM is
a exponential model based on a non-homogenous
Poisson process(NHPP). These numerous SRGMs
have been developed by software developers for the
estimation of reliability growth of products during
different types of software projects since the early
1970s [11,13]. Each such model is based on a dif-
ferent set of assumptions and hence takes a different
functional form. Also many papers have discussed
the optimal software release time problem using
SRGMs[9]. But various authors have discussed
SRGMs’ applications, limitations, and underlying as-
sumptions [5].

The popular software reliability models may gen-
erally be classified as perfect(finite) debugging
models and imperfect(infinite) debugging models.
The former assumes that each time a failure occurs,
the errors which caused it is immediately removed
and no new errors are introduced(6]. The latter
consider that faults are not always fully repaired and
new ones can be introduced as part of the fault repair
process [15]. But both models are often inaccurate.
Also models that are good overall are not always the
best choice for a particular data set.

When we estimate the parameters for reliability
metrics, we first must estimate the point estimates
of SRGMs. Generally, the parameters are estimated
from the observed failure data using maximum like—-
lihood estimator(MLE) [10]. We use this method be-
cause it seems more stable than other methods. But
the stability of parameter estimates using this meth—
od depends on a large number of failures data. In
particular, when we want to estimate it with small
observed data such as early stages of testing, we
give rise to the non-existence of MLE [7, 10].

" In this paper, we first look into variances of pa-
rameter estimates for nonhomogenous Poisson
process(NHPP) class of SRGMs. Then we inves-

tigate the effects of variances in the failure intensity
function estimate of these models using ones of pa-
rameter estimates. In this paper, we selected the
following finite and infinite failure models from the
NHPP model class: Log power model [15] and
Delayed S-Shaped model [14]. Some field research
demonstrates the superiority for these models [1].
And we will use the real data TV data sets. Section
2 we review the NHPP SRGMs. Section 3 obtains
the variance of failure intensity function for models.
Numerical example is presented in Section 4. Finally,
Section 5 concludes the paper.

2. NHPP models

Goel and Okumoto[6] assumed that the number
of software failures during non-overlapped time in-
tervals is s—independent and the software failure in-
tensity A(t) is proportional to the residual fault
content. Let M(t) denote cumulative number of ran-
dom events(faults) in the time interval [0,t]. Then
{N(t),t = 0} is called a counting process. For each
point of time ¢, we have a random number M(t).
m(t) denotes its expectation, i.e. m(t) = E[N(t)].
The function m{t) is called the mean value function.
Then software failure intensity function is related as
follows:

m(t) = /OA(s)ds
and

dm (t)
dt

A).

N(t) is known to have a Poisson probability mass
function with parameter m(¢), that is:

[m(8)]"e
n!

P(N(t) =t}= ,n=0,1,2,....

If A(t)=c is a constant, we have m(t) = At and
N(t) is called a homogenous Poisson process. We
generally represent the mean value function as a
function of two functions, the error content a(¢) and
the error detection rate b(t). The mean value func-

Exdestalx|

X37#HM3%/35

tion of the infinite failure NHPP models can be writ-
ten as follows:

t
7n(t)=e“3(")[7n0+f als)b(s)eP¥ds
by

t
where m(t,) =m, and B(t) =f b(s)ds, in which
tg

a(t) and b{¢t) are both functions of time. The NHPP
models can be classified into finite failure and in-
finite failure categories. If a(t)=a and b(?) is
time~dependent error detection rate, we call its
model perfect debugging model. Otherwise, we call
it imperfect debugging model. If we know mean value
function m(t), we estimate the parameters using
m.l.e method.

We are interest in infinite NHPP model because
it is realistic model. But we will treat the finite NHPP
model to compare with infinite one. Almering et.al{1]
use the following SRGMs for test his real data in their
paper. They demonstrate the superiority for these
models. Therefore, we also want to use these mod-
els in my research.

3. Expression for estimator of
software reliability metric

We want to express variation of the failure in-
tensity function estimate in according to the var—
iances in parameter estimates for proposed models.
Parameters of these models Include unknown pa-
rameters and estimate them using failure data.
Therefore, the software reliability metric estimator
included estimates which are a function of random
variables. Using the

Taylor approximation for functions of several
random variables and independence of random vari—
ables[4], we obtain the variance of the failure in-
tensity function estimator.

axt,, 2
el = [| o
I3 (/\ ; a
@‘i}%l\b} Vo)

where ¢ is given mission time and e and b, are pa-
rameters .

We want to obtain the variances of failure in-
tensity function estimator for proposed models using
the above expression. For the delayed S-shaped
model,

14 [X(tm)] =t I;t"‘th a)

O R R (n
—abe "t (—2+bt,,) V(b)
and for the log power model,
VAL | =1og’(1+1,,) Ma) @)

+ &log’g(l +t.)log|log(1+1,)] 14%).

4. Numerical analysis

Here we use a set of real test data [TV 2005]
introduced in [1]. These data show the occurrence
times of errors. They execute stability testing and
model selection using real test data from three soft-
ware development projects(TV2003, TV2004, and
TV2005). All the projects concerned developing
software for high-end TV-sets containing several
million lines of code. Their analysis focused on the
expected remaining number of faults in the software
during stability tests in maturity phase.

They selected the two finite NHPP SRGMs(Goel
and Okumoto model, Delayed S~Shaped model) and
two infinite NHPP SRGMs(log power model, log
Poisson execution time model). They concluded that
the log~like infinite NHPP SRGMs outperformed
both the finite models. We obtain the maximum like—-
lihood estimator of the parameters based on 103 er—
ror data of the TV 2005. Here we assume the mission
time t,, = 1342 test hours which is the stopping test-
ing time of the TV2005 project in their paper. If we
want to release the software devices at t,, = 1342,
it is important to see an estimate of failure intensity
function prior to the release of the software devices.
In particular, when 8 > 1, the failure intensity func-
tion of the log~power model is increasing and de-

. * —
creasing at £ =71

36/4HE LAE|Md Matmsol st ~ZEY o MM HEY

It is similar to that the S-shaped NHPP models. Table 3. V[t)]on b)

Because of human learn.ing pr.ocess,. depende.znt soft-) V[S] W) V[X()]
ware faults, etc, the failure intensity may increase

. Lo . . . 0.001 0.008 0.006 0.051
in the beginning before the testing results in reli-

. 0.002 0.017 0.007 0.059
ability growth. So, we choose delayed S-Shaped 0,003 0025 0.008 0.068
model as finite NHPP SRGM and log power model 0'004 0'032 0'009 01076
as infinite NHPP SRGM. Tablel is m.l.e of parame- . . > 0'010 5 6844
ters for two SRGMs. Also we express the variation 0.005 0.04 _ -
of the software reliability metric, failure intensity A
function as variance. We calculate the values using Table 2 and 3 show that the larger Ya) and 1b)
the R 2.9 program. respectively, also the larger V[X(tm)] as we expect.

Also we know that a rate of increase for M5) be-

4,1 Delayed S—shaped model comes larger than Wa). Finally, we evaluate the ef-
fect of a on the variance in failure intensity function

First of all, we want to evaluate V{A(t,)] on Ya) estimate. We set Ma)=0.1 and V(b)=0.001 for
irrespective of 1{b) using the expression(1). Let convenience’ sake. For the effect of a ,we change

‘Wa) change from 100 to 190 by 10. And W5) a from 100 to 109 by 1. The results are as follows:
change from 0.001 to 0.01 by 0.001. All figures are

round off in the fourth place.

Table 4. V[A(z,)] on a

i i a VAt)] a VIAt,)]
Table 2. V[A(t,)]on Wa) 100 0.002 105 0.002

Wa) V{A(t)] Wa) ViA(t.)] 101 0.002 106 0.002

100 0.009 150 0.014 102 0.002 107 0.002

110 0.010 160 0.015 103 0.002 108 0.002

120 0.011 170 0.016 104 0.002 109 0.002

130 0.012 180 0.017

140 0.013 190 0.018 Similarly, we evaluate the effect of b on the var-

iance in failure intensity function estimate. We set
Secondly, we similarly want to evaluate V[/\(tm)] Va) =01 and V(b) =0.000001 for convenience’
on W) irrespective of 1a). Let and Wa)=0 and sake. For the effect of b, we change b from 0.001

Ub) change from 0.001 to 0.010 by 0.001. to 0.010 by 0.001. The results are as follows:

Table1. SRGMs and m.l.e

SRGM Mean value function Failufx;l en Ciggehnsity m.l.e Note
Delayed B . o _w | a=105.987 | Perfect debugging
S-shaped model[14] | ™ (t) =all=(145t)e ™) Al)=abte b= 0.004 model(finite model)
B 3 _afln”(1+1) a=0.563 | Imperfect debugging
Log power model[15] m(t) = alog(1+1) Ae)= 1+¢ 3=2.640 | model(infinite model)

M37HM3E/37

Table 5. V]i(z,)] on b

Table 7. V[A(t,)] on WV(3)

vip) | VA | v | VAR
0.001 0.006 0.006 0.034
0.002 0.011 0.007 0.040
0.003 0.017 0.008 0.045
0.004 0.023 0.009 0.051
0.005 0.028 0.010 0.057

[[,])
—6 . —6
X 10 > 10
0.001 3.509 0.006 0.137
0.002 3.533 0.007 0.049
0.003 2.001 0.008 0.017
0.004 0.912 0.009 0.005
0.005 0.368 0.010 0.002

In the Table 4, we can see that as « is increasing
V[X(tm)] is decreasing. But its amount of decreasing
is very small. In the table 5, as b is increasing,
V[X(tm)] is increasing and decreasing. It is ob-
served that, because of human learning process, the
failure intensity may increase in the beginning be-
fore the testing results in a reliability growth.

4.2 Log power model

Log power model is the one of imperfect SRGMs.
It is interesting to see the variation of failure in-
tensity function when all faults in the software are
infinite. Similarly, we investigate to V[A(t,)] on
Wa) irrespective of V(3) using the expression(2).

Let ¥(3) =0 and V(&) change from 0.001 to 0.010
by 0.001.

Table 6. VA(t,)] on V(a)

Table 6 and 7 show that the larger V(a) and V(B),
also the larger V{A(t,,)]|as we expect. Also we know
that a rate of increase V(3) for becomes larger than
V{a). Finally, we evaluate the effect of a on the
variance in failure intensity function estimate. We
set Ma) =01 and V{(3)=0.001 for convenience'
sake. For the effect of @, we change a from 0.1 to
1 by 0.1, The results are as follows:

Table 8. V[A(t,)] on a

va) | VAR | ma) | VA
0.001 0.020 0.006 0.122
0.002 0.041 0.007 0.142
0.003 0.061 0.008 0.162
0.004 0.081 0.009 0.183
0.005 0.102 0.010 0.203

a VIA(t,)] Q vIA(t,)]
0.1 2.034 0.6 2.055
0.2 2.038 0.7 2.058
0.3 2.042 0.8 2.062
04 2.046 0.9 2.066
0.5 2.050 1 2.070

We evaluate the effect of 3 on the variance in fail-
ure intensity function estimate. Let ¥{a) =0.1 and
VIA) =0.000001 for convenience sake, For the ef-
fect of B, we change 8 from 2.1 to 3.1 by 0.1. The
results are as follows:

Table 9. V{A(t,)| on 3

Secondly, we want to evaluate V[/\(tm)l on V(B)
irrespective of V&), Let Wla) =0 and V(3) change

from 0.001 to 0.010 by 0.001.

b v |8 | VA
2.1 1.097 2.6 1.940
2.2 1.229 2.7 2.174
2.3 1.378 2.8 2.437
2.4 1.544 2.9 2.731
25 1.731 3.0 3.061

38/4cH4 Alg|

L

4 MO tE 2ol NaY HEY FuY aYs

ﬁ

A

In the Table 8 and 9, we can see that as « is in-
creasing V'{X(tm)] is increasing. Also, as 3 is in-
creasing V{X(tm)] 1s increasing. The reason is that

the new errors are introduced in the software when
we debugged a fault.

5. Conclusions and further research

We calculate the sensitivity of estimators about
failure intensity function for two SRGMs respec-
‘tively. The one is perfect(finite) debugging model,
delayed S-Shaped model and the other is im-
perfect(infinite) debugging model, log power model.
Failure intensity functions include the unknown
parameters. Parameters are estimated by maximum
likelihood estimate. In our paper, we investigate the
variation of failure intensity function for parameters.
In the two SRGM models, as the variations of a and
b are larger respectively, also the variation of failure
intensity function is larger as we expect. But we
know that a rate of increase for the variation of b
becomes larger than a. In the delayed S~shaped
model, as a is increasing, the variation of failure in-
tensity function is decreasing. But its amount of de-
creasing is very small. On the other hand, as b is
increasing, the variation of failure intensity function
is increasing and decreasing. But in the log power
model, as a and b are increasing, the variation of
failure intensity function is also increasing.

We want to apply to other reliability data and an-
other reliability metrics(reliability and the residual
number of faults etc) in the future. We can see which
metric is sensitive to variation of estimator.

References

[1] Almering, V., Genuchten, M.V., Cloudt, G. and
Sonnemans, PJM., “Using Software Reliability
Growth Models in Practice,” Software, IEEE, Vol.
24, Issue 6, pp. 82-88, 2007.

[2] Charette, Robert N., “Why Software Fails?”,
Spectrum, IEEE, Vol.42, Issue9, pp. 42-49, 2005,

[3] Cotte, D. W., “System-reliability confidence-
intervals for complex-systems with estimated
component~reliability.”, IEEE Transactions on
Reliability, Vol.46, No.4, pp. 487-493. 1997.

[4] Dadkhah, Foundations of Mathematical And
Computational Economics, 1st Edition, South-
Western Publisher 2007.

[5] Goel, AL, “Software Relaibility Models: Assump-
tions, Limitations, and Applicability,” IEEE Tran~
sactions Software Engineering, Vol.11, No,12, pp.
1411-1423, 1985.

[6] Goel, AL. and Okumoto, K., “Time-dependent er-
ror-detection rate model for software and other
performance measures,” IEEE Transactions on
Reliability, Vol. R-28, pp. 206-211, 1979.

[7] Hossain, S.A. and Dahiya, R.C., “Estimating the
parameters of a non-homogenous poisson process
model for software reliability, "IEEE Transactions
on Reliability, R-42, No.4, pp. 604-612, 1993.

[8] Huang, C.Y. Kuo, S.Y. and. Lyu, M.R., “Optimal
Software Release Policy Based on Cost, Reliability
and Testing Efficiency,”

[9] Proceedings of the 23rd Annual International
Computer Software and Applications Conference,
pp. 468-473, 1999.

[10] Joe, H., “Statistical inference for general-order-
statistics and non homogenous Poisson process
software reliability models,” IEEE Transactions on
software Engineering, Vol.15, No.11, pp. 1485-
1490. 1989.

[11] Knafl, G.J. and Morgan, J., “Solving ML equations
for 2-paremater Piosson-process models for un-
grouped software-failure data,” IEEE Transactions
on Reliability, R-45, No.1, pp. 42-53, 1996.

[12] Musa, J.D., Software Reliability Engineering: More
Reliable Software, Faster Development and
Testing. McGraw—-Hill, 1998.

{13] Pham, H., “Software reliability assessment: Im-
perfect debugging and multiple failure types in soft—
ware development,” EG&G-RAAM-10737, Idaho
National Engineering Laboratory.

[14] Pham, H, Software reliability, Singapore: Springer~
Verlag, 2000.

[15] Yamada, S. Ohba, M. and Osaki, S., “S-Shaped
Reliability Growth Modeling for Software Error
Detection,” IEEE Transaction on Reliability, Vol.
32, No.5, pp. 475-478, 1983.

[16] Zhao, M. and Xie, M. “On the log~power software
reliability model,” Proceeding of the 3rd Inter-
national Symposium on Software Reliability
Engineering, pp. 14-22, 1992,

