• Title/Summary/Keyword: NH4+-N and E. coli removal

Search Result 4, Processing Time 0.019 seconds

Ammonia-nitrogen Removal in Sea Water by Using Electrolysis (전기분해법에 의한 해수내의 암모니아성 질소 제거)

  • 이병헌;이제근;길대수;곽순열
    • Journal of Aquaculture
    • /
    • v.10 no.4
    • /
    • pp.435-438
    • /
    • 1997
  • Biological ammonia removal system have been used conventionally for the seawater fish farming. But this process requires long hydraulic retention times and large area. Also it has a trouble of NO3-N accumulation in the system. Therefore, this study was conducted to find out the feasibility of effective nitrogen removal efficiency in the sea water fish farming system by electolysis. As the result, electrolysis system showed a good ammonia and nitrate nitrogen removal and E. coli sterilization efficiencies. Because of the high salinities in the seawater for electron transfer, electrolysis is an effictive water treatment process for seawater fish farming. The relation among ammonia removal efficiency, hydraulic retention time (HRT) and electric wattage (watt) with 10 mm electrod distance isas follow ; log [$NH_4^$+-N(%)]=0.431log(HRT(sec)$\times$Watt)+0.88(r=0.950) And the relation between ammonia removal efficiency and residual chlorine concentration in the seawater is as follow; $$NH_4^+-N(%)=48\cdotlog[Residual\;chlorine(mg/\ell)+28(r=0.892)$$

  • PDF

A Study on the Removal Characteristics of Organic matter and Bacteria with the Use of Ozone (오존을 이용한 유기물 및 세균의 제거 특성에 관한 연구)

  • Lee, Kwan-Young;Park, Sang-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.1
    • /
    • pp.15-20
    • /
    • 2007
  • The aim of this study is to measure the removal characteristics of organic matter and bacteria with the use of ozone to reduce the problems caused by bacteria and organic matter which appear in sea-water is summer season. When the total input of ozone was $1.4mg/{\ell}O_3$, the removal rate of bacteria and E-coli from sea-water proved to be 100%. With the same input of ozone, on the other hand, the removal rate of COD turned to be relatively low, 50%, which was to the fact that sea-water consists of salt matter which is a kind of COD matter. This result supports the idea that we can keep using ozone steadily in the future to remove organic matters and bacteria from sea-water because ozone destructs relatively less salt matter in sea-water. Also, the treatment effect rate of SS, turbidity and organic matters such as $NH_3$-N, $NO_3$-N etc, was very high. As a result, we assume that the treatment of organic matter in sea-water with ozone is very effective

  • PDF

Development of Vortex Scrubber Using Electrolyzed Water for the Removal Efficiency Improvement of Minute Particles and Odor (미세분진 및 냄새제거 효율향상을 위한 선회류식 세정전해 기술개발)

  • Kim, Nor-Jung;Lim, Seong-Il;Kim, Sun-Mi;Kim, Sun-Uk;Kim, Lae-Hyun;Kim, Sun
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.3
    • /
    • pp.1-7
    • /
    • 2010
  • According to Indoor Air Quality(IAQ) management law for multi-use buildings, SEEONE CO., Ltd. made pilot and tested it to remove minute particle, odor, VOCs, etc. within the standards of IAQ. This pilot made by SEEONE CO., Ltd. is vortex scrubber washing electrolyzed water. As 30 minutes test result in multi-use building indoor place, minute particle(the smoke of a cigarette) was reduced $920{\mu}g/m^3{\rightarrow}112{\mu}g/m^3$, gaseous contaminants was reduced Formaldehyde (HCHO) 20ppm$\rightarrow$4ppm, Ammonia($NH_3$) 50ppm$\rightarrow$1ppm, Trimethylamine ($(CH_3CH_2)_3N$) 15ppm$\rightarrow$trace, Methylethylketone($CH_3COC_2H_5$) 25ppm$\rightarrow$trace, Acetic acid ($CH_3COOH$) 20ppm$\rightarrow$trace, Acetaldehyde($CH_3CHO$) 15ppm$\rightarrow$2ppm and Acetone($CH_3COCH_3$) 50ppm$\rightarrow$N.D. The pilot test result of the air filter using electroyzed water in vortex scrubber showed high removal efficiency. Because purified air maintain indoor humidity of approximately 40~60%, so users can feel pleasant. In E.coli, S.aureus sterilization test and CODcr, turbidity treatment test by electrolysis, germs was sterilized over 99.99% and CODcr and turbidity was decreased gradually. So water used for washing can be reused by electrolysis.

Inactivation of Sewage Microorganisms using Multi-Plasma Process (멀티 플라즈마 공정을 이용한 하수 미생물의 불활성화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.985-993
    • /
    • 2014
  • For the field application of dielectric barrier discharge plasma reactor, a multi-plasma reactor was investigated for the inactivation of microorganisms in sewage. We also considered the possibility of degradation of non-biodegradable matter ($UV_{254}$) and total organic carbon (TOC) in sewage. The multi-plasma reactor in this study was divided into high voltage neon transformers, gas supply unit and three plasma modules (consist of discharge, ground electrode and quartz dielectric tube). The experimental results showed that the inactivation of microorganisms with treated water type ranked in the following order: distilled water > synthetic sewage effluent >> real sewage effluent. The dissolved various components in the real sewage effluent highly influenced the performance of the inactivation of microorganisms. After continuous plasma treatment for 10 min at 180 V, residual microorganisms appeared below 2 log and $UV_{254}$ absorbance (showing a non-biodegradable substance in water) and TOC removal rate were 27.5% and 8.5%, respectively. Therefore, when the sewage effluent is treated with plasma, it can be expected the inactivation of microorganisms and additional improvement of water quality. It was observed that the $NH_4{^+}$-N and $PO{_4}^{3-}$-P concentrations of sewage was kept at the constant plasma discharging for 30 min. On the other hand, $NO_3{^-}$-N concentration was increased with proceeding of the plasma discharge.