• Title/Summary/Keyword: NH3-N

Search Result 2,430, Processing Time 0.036 seconds

Studies on the Amino acid Metabolism of Young Rice Roots(Part I) -Effects of Various Nitrogen Compounds for Growth of Rise Roots and Transaminase Activity- (수도근(水稻根)의 Amino산(酸) 대사(代謝)에 관(關)한 연구(硏究) -제1보(第一報) 수도근(水稻根)의 생장(生長)과 Transaminase의 활성(活性)에 미치는 각종질소화합물(各種窒素化合物)의 영향(影響)-)

  • Kim, Kwang-Sik
    • Applied Biological Chemistry
    • /
    • v.11
    • /
    • pp.143-149
    • /
    • 1969
  • In order to investigate the inter-relation with the growth of the rice-root and its transaminase-activity, by measuring the growth of its root and transaminase-activity supplying this root with various nitrogen Compounds($NO_3$-N, $NH_4$-N and Amino acid.). The obtained results are summarized as follows; 1. Growth of rice-root supplied with $NO_3$-N is generally increased in length and weight, compared with that of the root fertilized by $NH_4$-N. 2. The above-metnioned root with $NH_4$-N is not only decreased in its weight and length but also is apt to inhibited its growth as the nitrogen concentruration is increased, in compared with the root provided with $NO_3$-N. 3. The activity of G.O.T. and G.P.T. for the root fertilized by $NH_4$-N, the badly grown root is generally increased, while of the root supplied with $NO_3$-N is decreased. 4. The activity of G.O.T. and G.P.T. for the root provided with amino acid known as the considerable growth inhibiting compound is generally decreased, while that of the badly-grown root is increased. 5. The activity of G.O.T. and G.P.T. in the supernatant fraction of the rice-root is for the most part, high and low in the mitochondrial fraction.

  • PDF

Isotope Ratio of Mineral N in Pinus Densiflora Forest Soils in Rural and Industrial Areas: Potential Indicator of Atmospheric N Deposition and Soil N Loss (질소공급, 고추의 생육 및 수량에 대한 녹비작물 환원 효과)

  • Kwak, Jin-Hyeob;Lim, Sang-Sun;Park, Hyun-Jung;Lee, Sun-Il;Lee, Dong-Suk;Lee, Kye-Han;Han, Gwang-Hyun;Ro, Hee-Myong;Lee, Sang-Mo;Choi, Woo-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.1
    • /
    • pp.46-52
    • /
    • 2009
  • Deposition of atmospheric N that is depleted in $^{15}N$ has shown to decrease N isotope ratio ($^{15}N/^{14}N$,expressed as ${\delta}^{15}N$) of forest samples such as tree rings, foliage, and total soil-N. However, its effect on ${\delta}^{15}N$ of mineral soil-N which is biologically active N pool has never been tested. In this study, ${\delta}^{15}N$ of mineral N($NH{_4}^+$ and $NO_3{^-}$) in forest soils from organic and two depths of mineral soil layers (0 to 20 cm and 20 to 40cm depth) of Pinus densiflora stands located at two distinct areas (rural and industrial areas) in southern Korea was analyzed to investigate if there is any difference in ${\delta}^{15}N$ of mineral N between these areas. We also evaluated potential N loss of the study sites using ${\delta}^{15}N$ of mineral N. Across the soil layers, the ${\delta}^{15}N$ of $NH{_4}^+$ ranged from +8.9 to +24.8‰ in the rural area and from +4.4 to +13.8‰ in the industrial area. Soils from organic layer (+4.4‰) and mineral layer between 0 and 20 cm (+13.8‰) of industrial area showed significantly lower ${\delta}^{15}N$ of $NH{_4}^+$ than those of rural area (+8.9 and +24.3‰, respectively), probably indicating the greater contribution of $^{15}N$-depleted $NH{_4}^+$ from atmospheric deposition to forest in the industrial area than in the rural area. Meanwhile, ${\delta}^{15}N$ of $NO_3{^-}$ was not different between the rural and industrial areas, probably because ${\delta}^{15}N$ of $NO_3{^-}$ is more likely to be altered by the N loss that causes $^{15}N$ enrichment of the remaining soil N pool. Compared with the ${\delta}^{15}N$ of soil mineral N reported by other studies (from -10.9 to +15.6‰ for $NH{_4}^+$ and -14.8 to +5.6‰ for $NO_3{^-}$), the ${\delta}^{15}N$ observed in our study was substantially high, suggesting that the study sites are more subject to the N loss. It was concluded that $NH{_4}^+$ rather than $NO_3{^-}$ can conserve the ${\delta}^{15}N$ signature of atmospheric N deposition in forest ecosystems.

Effect of Fertilization on Sr-90 Uptake of Soybean Plants (대두(大豆)의 Sr-90 흡수(吸收)에 대한 시비(施肥)의 영향(影響))

  • Kim, Jae-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.1
    • /
    • pp.31-36
    • /
    • 1993
  • A pot experiment was carried out to investigate the influence of application of nitrogen, phosphorus and calcium on the yield and uptake of Sr-90 by soybean plant. The results obtained were summarized as follows : 1. The application of N tended to decrease the dry matter yield of soybean. There was, however, difference in the effect on the yield between $NH_4-N$ and $NO_3-N$ ; the yield was higher in the former in the latter. On the other hand, the application of P and Ca increased the yield. 2. The uptake of Sr was decreased by the application of N, but such effect was greater in $NH_4-N$ than in $NO_3-N$. 3. The effect of N application in reducing the uptake of Sr. was enhanced by the application of P with N. 4. The combined application of P and lime showed significant effect of reducing the uptake of Sr by soybean plant. The uptake of Sr was lowest in the pot that received P, lime and $NH_4-N$ together.

  • PDF

Effect of Ammonia Nitrogen Loading Rate on the Anaerobic Digestion of Slurry-typed Swine Wastewater (슬러리형 돈사폐수의 혐기성 소화시 암모니아 부하의 영향)

  • Won, Chul-Hee;Kwon, Jay-Hyouk;Rim, Jay-Myoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.1
    • /
    • pp.49-57
    • /
    • 2009
  • This research examined the effect of ammonia nitrogen loading rate(NVLR) on the anaerobic digestion of slurry-typed swine wastewater. The anaerobic reactor was used an upflow anaerobic sludge blanket (UASB) process. This UASB reactor was operated at a NVLR of $0.02{\sim}0.96kg{NH_4}^+-N/m^3/day$. The methane content showed the range of 73.3~77.9% during the steady state period. Free ammonia(FA) concentration increased over inhibition level as pH increase from 7.3 to 8.2. However, in consideration of methane content, methane producing bacteria (MPB) inhibition by FA and total ammonia(TA) was not observed. A stepwise increase of the NVLR resulted in a deterioration in the COD removal rate in UASB reactor. The COD removal rate were 60% for NVLR up to $0.55kg{NH_4}^+-N/m^3/day$. As the NVLR increased from 0.09 to $0.96kg{NH_4}^+-N/m^3/day$, the biogas production rate varied from 3.71 to 9.14L/d and the methane conversion rate of the COD varied from 0.32 to $0.20m^3CH_4/kg$ COD removed. Consequently, in considerations of FA concentration, COD removal rate, and $CH_4$ production rate, the UASB reactor must be operated to lower than $0.40kg{NH_4}^+-N/m^3/day$ of NVLR.

Development of a System to Treat Industrial Wastewater with High Carbonaceous and Nitrogenous Materials (고농도(高濃度) 유기물(有機物) 및 질소(窒素)를 함유(含有)한 산업폐수처리(産業廢水處理) 시스템 개발(開發))

  • Lee, Yong Woon;Lee, Byonghi;Chung, Seon Yong;Jung, Su Jung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.2
    • /
    • pp.67-75
    • /
    • 1998
  • The purpose of this study is to develop a system for treating industrial wastewater with high carbonaceous and nitrogenous materials. To investigate the potential of using this system, a number of experiments are conducted for about 7 months with the varieties of COD and $NH_3-N$ concentrations, and hydraulic retention time. In the system, 1,500mg/L of COD is remover over 95% in a retention time as low as 9 hours, and the $NH_3-N$ removal efficience is nearly 100% with 90mg/L of $NH_3-N$ in the influent. These results illustrate that the system can effectively be used to treat industrial wastewater containing high concentration of COD and $NH_3-N$.

  • PDF

Biological Nitrification and Denitrification for Landfill Leachate Containing High Concentration of Ammonium-Nitrogen by using MLE Process (MLE 공정을 이용한 고농도 NH4+-N 함유 침출수의 생물학적 질산화/탈질)

  • Won, Jong-Choul;Namkoong, Wan;Bae, Young-Shin;Lee, Kyung-Shin;Park, Ki-Hyuk;Song, Su-Sung;Yoon, Cho-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1027-1035
    • /
    • 2000
  • This study was carried out to investigate the treatability of landfill leachate having high concentration of ammonium nitrogen with/without the circulation of media in pilot-scale($48m^3basis$) process. Total nitrogen removal efficiency was relatively increased in the media added process (influent ; $1.230{\sim}2,000mg{\cdot}l^{-1}$, effluent ; $120{\sim}250mg{\cdot}l^{-1}$) compared with the control process. The difference of nitrogen removal efficiency between these processes may be due to that stable growth of nitrifiers attached to the media could be achieved 99.3% of ammonium-nitrogen removal efficiency(without ; 98.2%) and 88.5% of total nitrogen removal efficiency(without ; 85.8%) were shown in media added process, respectively. Also, optimum BOD/ $NH_4{^+}$-N ratio was relatively decreased in the media process compared with the control process. Sludge settleability, on the other hand. was shown better in media added process than in control process. This outstanding sludge settleability in the media added process indicates the compatibility of media(zeolite) to the microorganism and the possibility of using media of biofilm process.

  • PDF

The Effects of SO2 and NH3 on the N2O Reduction with CO over MMO Catalyst (MMO 촉매와 CO 환원제에 의한 N2O 분해에서 SO2 및 NH3 영향 연구)

  • Chang, Kil Sang;You, Kyung-Chang
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.653-657
    • /
    • 2009
  • Nitrous oxide is a typical greenhouse gas which is produced from various organic or fossil fuel combustion processes as well as chemicals producing plants. $N_2O$ has a global worming potential of 310 times that of $CO_2$ on per molecule basis, and also acts as an ozone depleting material in the stratosphere. However, its removal is not easy for its chemical stability characteristics. Most SCR processes with several effective reducing agents generally require the operation temperature higher than $450^{\circ}C$, and the catalytic conversion becomes decreased significantly when NOx is present in the stream. Present experiments have been performed to obtain basic design data of actual application concerning the effects of $SO_2$ and $NH_3$ on the interim and long term activities of $N_2O$ reduction with CO over the mixed metal oxide (MMO) catalyst derived from a hydrotalcite-like compound precursor. The MMO catalysts used in the experiments, have shown prominent activities displaying full conversions of $N_2O$ near $200^{\circ}C$ when CO is introduced. The presence of $SO_2$ is considered to show no critical behavior as can be met in the $NH_3$ SCR DeNOx systems and the effect of $NH_3$ is considered to play as mere an impurity to share the active sites of the catalysts.

Distribution Characteristics of Total Nitrogen Components in Streams by Watershed Characteristics (유역특성에 따른 하천에서의 존재형태별 질소 분포 특성 비교)

  • Park, Jihyoung;Sohn, Sumin;Kim, Yongseok
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.5
    • /
    • pp.503-511
    • /
    • 2014
  • The temporal and spatial analyses of total nitrogen (TN) fractionation were conducted in order to understand 1) total nitrogen components in streams and 2) their patterns in rainy and dry seasons. The result showed that the concentration of nitrogen components in stream water was lower in non-urban area and getting higher in urban area. Dissolved total nitrogen (DTN) was 95~97.7% of total nitrogen in streams, and the proportion of dissolved organic nitrogen (DON) and ammonia nitrogen ($NH_3-N$) was higher with increasing urban area. The concentration of total nitrogen and nitrate nitrogen ($NO_3-N$) were highest in winter among four seasons. The result was showed that concentration of $NH_3-N$ was same variation as concentrations of TN and $NO_3-N$ in urban-rural complex and urban areas, except rural areas. During rainy season, concentrations of particulate organic nitrogen (PON) and $NH_3-N$ increased in rural areas and decreased in both urban-rural complex and urban areas. Correlation between total nitrogen components and land uses was positively correlated with site > paddy, and negatively correlated with forest. The variation of total nitrogen concentration was determined by $NO_3-N$ in non-urban areas, by $NO_3-N$ and $NH_3-N$ in urban-rural complex and by $NH_3-N$ in the urban areas.

산란계의 Ceramics 급여 효과

  • 손장호
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2004.11a
    • /
    • pp.103-104
    • /
    • 2004
  • This study was evaluated the dietary affect of ceramics on laying performance, intestinal microflora population, NH$_3$ and VFA gas emission from excreta and fatty acids composition of egg yolk in laying hens. A total of 180 layer at 34 weeks of age were fed the experimental diets containing 0.0 % (Control), 0.4 % and 0.8 % of ceramics powder for 6 weeks. It is concluded that 0.4 % ceramics powder supplementation in the 34 to 40 weeks laying hens diet, improves the laying performance and ratio of egg yolk n-6/n-3 fatty acids contents and decreasing emission of NH$_3$ and VFA gas from excreta.

  • PDF

Surface Engineering of GaN Photoelectrode by NH3 Treatment for Solar Water Oxidation

  • Soon Hyung Kang;Jun-Seok Ha
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.388-396
    • /
    • 2023
  • Photoelectrochemical (PEC) water splitting is a vital source of clean and sustainable hydrogen energy. Moreover, the large-scale H2 production is currently necessary, while long-term stability and high PEC activity still remain important issues. In this study, a GaN-based photoelectrode was modified by an additional NH3 treatment (900℃ for 10 min) and its PEC behavior was monitored. The bare GaN exhibited a highly crystalline wurtzite structure with the (002) plane and the optical bandgap was approximately 3.2 eV. In comparison, the NH3-treated GaN film exhibited slightly reduced crystallinity and a small improvement in light absorption, resulting from the lattice stress or cracks induced by the excessive N supply. The minor surface nanotexturing created more surface area, providing electroactive reacting sites. From the surface XPS analysis, the formation of an N-Ga-O phase on the surface region of the GaN film was confirmed, which suppressed the charge recombination process and the positive shift of EFB. Therefore, these effects boosted the PEC activity of the NH3-treated GaN film, with J values of approximately 0.35 and 0.78 mA·cm-2 at 0.0 and 1.23 VRHE, respectively, and an onset potential (Von) of -0.24 VRHE. In addition, there was an approximate 50% improvement in the J value within the highly applied potential region with a positive shift of Von. This result could be explained by the increased nanotexturing on the surface structure, the newly formed defect/trap states correlated to the positive Von shift, and the formation of a GaOxN1-x phase, which partially blocked the charge recombination reaction.