• 제목/요약/키워드: NH3 sensor

검색결과 113건 처리시간 0.027초

디젤 엔진 Urea-SCR DeNOx 시스템용 혼합전위 방식 암모니아 가스 센서의 감지물질 특성 비교 (Characteristic comparison of sensing materials in mixed potential type NH3 gas sensors for urea-SCR DeNOx system in diesel engine)

  • 최안기;양영창;구본철;박종욱
    • 센서학회지
    • /
    • 제19권3호
    • /
    • pp.176-183
    • /
    • 2010
  • It is considered that the urea injection DeNOx SCR(selective catalytic reduction) system is the only promising method to satisfy the worldwide NOx emission standards. As for the theoretical aspect, reactants of NO and $NO_2$ with $NH_3$ produce $H_2O$, $N_2$ and $O_2$ which do not harm human beings and environmental as well. The realization of maximum NOx conversion (without using a post oxidation catalyst) is only possible with closed loop controlled urea dosing. It means built-in $NH_3$ gas sensor have to be developed for detecting accurate $NH_3$ concentration for the feedback system. Using YSZ(yttria-stabilized zirconia) as a solid state electrolyte and $In_2O_3$ as a sensing material, this paper aims to study dependable $NH_3$ gas sensor for the promising solution of DeNOx technology, which have a reproducible electric output signal, a high sensitivity and fast response.

FIELD TEST INSTALLATIONS USING N$H_3$SENSOR AND VENTILATION RATE SENSOR FOR CONTINUOUS MEASUREMENT OF TOTAL AMMONIA EMISSION FROM ANIMAL HOUSES

  • Berckmans, D.;Ni, J.Q.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
    • /
    • pp.393-402
    • /
    • 1993
  • Two field test installations are discussed. In the first one a new ammonia sensor and an accurate ventilation rate sensor are combined. They are installed in the exhaust chimney in a ventilated pig house. The relative humidity and the room temperature are measured as well. In the second one, an in situ NH$_3$longrightarrowNO converter with subsequent NOx analyser is also being added for accurate ammonia measurement . In this way , the continuous measurement of the total NH$_3$emission can be obtained , the performance of the NH$_3$ sensor can be evaluated, and the ammonia reduction techniques can be tested. The outputs of measurement are fed into a data acquisition system then to a PC in the laboratory. There has been realised the first test installation with which research on the new ammonia sensor is carried out. The primary research results are presented.

  • PDF

Vertically Aligned WO3-CuO Core-Shell Nanorod Arrays for Ultrasensitive NH3 Detection

  • Yan, Wenjun;Hu, Ming
    • Nano
    • /
    • 제13권10호
    • /
    • pp.1850122.1-1850122.6
    • /
    • 2018
  • Vertically aligned $WO_3$-CuO core-shell nanorod arrays for $NH_3$ sensing are prepared. The sensor is fabricated by preparing $WO_3$-CuO nanorod arrays directly on silicon wafer with interdigital Pt electrodes. The $WO_3$-CuO nanorod arrays are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The sensor based on the vertically aligned $WO_3$-CuO nanorod arrays exhibits ultrasensitive $NH_3$ detection, indicating p-type behavior. The optimum sensing temperature is found to be about $150^{\circ}C$. Both response and recovery time to $NH_3$ ranging from 50 ppm to 500 ppm are around 10-15 s. A possible $NH_3$ sensing mechanism of the vertically aligned hybrid nanorod arrays is proposed.

피치계 활성탄소섬유기반 가스센서 제조 및 유해가스 감응 특성 (Preparation of Gas Sensor from Pitch-based Activated Carbon Fibers and Its Toxic Gas Sensing Characteristics)

  • 김민일;이영석
    • 공업화학
    • /
    • 제25권2호
    • /
    • pp.193-197
    • /
    • 2014
  • 피치계 활성탄소섬유의 유해가스 감응특성을 알아보고자 피치계 활성탄소섬유와 폴리비닐알코올(PVA)을 이용하여 가스센서용 전극을 제조하였다. 제조된 가스센서용 활성탄소섬유 전극의 물리화학적 특성은 주사전자현미경(SEM) 및 비표면적 측정기(BET)를 이용하여 분석하였다. 또한, 전극의 유해가스 감응특성은 $NH_3$, NO 및 $CO_2$와 같은 여러 유독가스를 이용하여 확인하였다. 가스센서용 활성탄소섬유 전극의 비표면적은 바인더인 PVA에 의하여 활성탄소섬유보다 33% 감소하였지만, 전극의 기공크기분포는 PVA에 의하여 크게 영향을 받지 않았다. 가스센서용 활성탄소섬유 전극은 반도체 기반 가스센서와는 다르게 전자도약에 의해서 유해가스를 감응하였다. 본 연구에서, 활성탄소섬유 전극의 저항은 100 ppm의 $NH_3$ 유해가스에 대하여 7.5% 감소하였으며, 그 $NH_3$ 가스 감응특성이 다른 유해가스보다 뛰어남을 확인하였다.

스핀 코팅법으로 제작한 다공성 CuBr 필름의 암모니아 감응특성 (NH3 sensing properties of porous CuBr films prepared by spin-coating)

  • 김상권;유병훈;윤지욱
    • 센서학회지
    • /
    • 제30권6호
    • /
    • pp.451-455
    • /
    • 2021
  • Porous copper bromide (CuBr) films are highly advantageous for detecting ammonia (NH3). The fabrication of porous CuBr films requires complex high-temperature processes or multistep processes. Herein, we report the uncomplicated preparation of porous CuBr films by a spin-coating method and the films' excellent NH3 sensing properties. The porous films were prepared by spin-coating 100, 150, and 200 mM CuBr solutions, and then dried in a vacuum oven for 2 h. All the films showed a high NH3 response; in particular, the film prepared using a 100 mM CuBr solution showed an extremely high response (resistance ratio = 852) to 5 ppm NH3. The film also showed fast response and recovery times, 272 s and 10 s respectively, even at room temperature. The outstanding NH3 sensing characteristics were explained in relation to the porosity and thickness of the prepared films. The high-performance NH3 sensors used in this study can be used for both indoor air quality and environmental monitoring applications.

Highly Porous Tungsten Oxide Nanowires As Resistive Sensor for Reducing Gases

  • Nguyen, Minh Vuong;Hoang, Nhat Hieu;Jang, Dong-Mi;Jung, Hyuck;Kim, Do-Jin
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.16.1-16.1
    • /
    • 2011
  • Gas sensor properties of $WO_3$ nanowire structures have been studied. The sensing layer was prepared by deposition of tungsten metal on porous single wall carbon nanotubes followed by thermal oxidation. The morphology and crystalline quality of $WO_3$ material was investigated by SEM, TEM, XRD and Raman analysis. A highly porous $WO_3$ nanowire structure with a mean diameter of 82 nm was obtained. Response to CO, $NH_3$ and $H_2$ gases diluted in air were investigated in the temperature range of $100{\sim}340^{\circ}C$ The sensor exhibited low response to CO gas and quite high response to $NH_3$ and $H_2$ gases. The highest sensitivity was observed at $250^{\circ}C$ for $NH_3$ and $300^{\circ}C$ for $H_2$. The effect of the diameters of $WO_3$ nanowires on the sensor performance was also studied. The $WO_3$ nanowires sensor with diameter of 40 nm showed quite high sensitivity, fast response and recovery times to $H_2$ diluted in dry air. The sensitivity as a function of detecting gas concentrations and gas sensing mechanism was discussed. The effect of dilution carrier gases, dry air and nitrogen, was examined.

  • PDF

$NH_3$ Gas Sensor Based on ZnO Nanowires as Sensing Material

  • 노임준;신백균
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.378-379
    • /
    • 2012
  • ITO 만큼 높은 전도성과 광학적 투과성을 갖는 Al-doped ZnO (AZO) 박막을 DC-Pulse magnetron sputtering을 이용하여 40 nm 두께로 증착 후 리소그라피 공정을 통해 $30{\mu}m$ 간격으로 패터닝 하였다. 간격 30 ${\mu}m$로 배열된 AZO를 촉매층으로 하는 수열합성법을 리사이클 공정을 반복하여 수행하여 ZnO 나노선을 성장시켰다. 이와 같이 AZO 전극 사이에 길이 $30{\mu}m$의 ZnO 나노선이 래터럴 구조로 연결된 소자의 $NH_3$ 가스감지 특성을 조사하였다. 합성된 나노선의 전기적, 광학적, 구조적인 특성을 분석하여 높은 가스 감지도를 예상할 수 있는 특성을 확인하였다. 제작된 가스센서를 진공 챔버에 설치 후 양 전극간에 동작전압(Operating voltage)을 1 V로 인가하여 고정한 후에 $NH_3$를 주입(Injection)과 퍼지(Purge)를 반복하며 그 주입량(10 ppm, 20 ppm, 40 ppm, 60 ppm)에 변화를 주었고, 그에 따른 전류변화를 관찰하여 $NH_3$ 가스감지특성을 평가하였다.

  • PDF

NH3 Sensing Properties of SnO Thin Film Deposited by RF Magnetron Sputtering

  • Vu, Xuan Hien;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.272-272
    • /
    • 2014
  • SnO thin films, 100 nm in thickness, were deposited on glass substrates by RF magnetron sputtering. A stack structure of $SnO_2/SnO$, where few nanometers of $SnO_2$ were determined on the SnO thin film by X-ray photoelectron spectroscopy. In addition, XPS depth profile analysis of the pristine and heat treated thin films were introduced. The electrical behavior of the as-sputtered films during the annealing was recorded to investigate the working conditions for the SnO sensor. Subsequently, The NH3 sensing properties of the SnO sensor at operating temperature of $50-200^{\circ}C$ were examined, in which the p-type semiconducting sensing properties of the thin film were noted. The sensor shows good sensitivity and repeatability to $NH_3$ vapor. The sensor properties toward several gases like $H_2S$, $CH_4$ and $C_3H_8$ were also introduced. Finally, a sensing mechanism was proposed and discussed.

  • PDF

Gas sensor based on hydrogenated multilayer graphene

  • 박성진;박민지;유경화
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.273.1-273.1
    • /
    • 2016
  • Graphene exhibits a number of unique properties that make it an intriguing candidate for use in sensor. Here, we report graphene-based gas sensor. Graphene was grown using CVD. Then, the sensor was made using standard lithography techniques. The sensor conductance increased upon exposure to NH3, whereas it decreased upon NO2, suggesting that NH3 and NO2 might be discriminated using the graphene-based sensor. To improve the sensitivity, graphene was treated with hydrogen plasma. After hydrogen treatment, the electrical properties of graphene changed from ambipolar to p-type semiconductors. In addition, the sensor performance was improved probably due to an opening of bandgap.

  • PDF

단층 탄소나노튜브의 암모니아 가스에 대한 감응특성과 열처리 효과 (NH3 Gas Sensing Characteristics of Single-Walled Carbon Nanotubes and Heating Effect)

  • 허증수;이상태;김민주;윤광현
    • 한국재료학회지
    • /
    • 제14권4호
    • /
    • pp.276-280
    • /
    • 2004
  • Carbon nanotubes(CNT) were synthesized by arc-discharge method. To fabricate CNT sensor, CNT powder was dispersed in $\alpha$-Terpinol($C_{10}$ $H_{17}$OH) solution. The CNT films were fabricated by screen printing on the interdigitated Pt/Pd alloy electrode. The microstructure of CNT film were observed by scanning electron microscopy (SEM). In order to investigate the gas sensing characteristics of the film, the CNT film was experimented to measure NH$_3$ response and recovery time. And this sensor shows better reproductibility and faster recovery time than another CNT sensors. We suggest the possibility to utilize a CNT as new sensing materials for environmental monitoring.