• Title/Summary/Keyword: NH2

Search Result 4,978, Processing Time 0.026 seconds

The Adsorption and Desorption of $NH_3$ on Rutile $TiO_2(110)-1{\times}1$ Surfaces

  • Kim, Bo-Seong;Li, Zhenjun;Kay, Bruce D.;Dohnalek, Zdenek;Kim, Yu-Gwon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.265-265
    • /
    • 2012
  • The adsorption of molecular $NH_3$ on rutile $TiO_2(110)-1{\times}1$ surfaces was investigated using a temperature-programmed desorption (TPD) technique combined with a molecular beam apparatus. A quantitative investigation into the TPD spectra of $NH_3$ was made for $NH_3$ adsorbed on two kinds of rutile $TiO_2(110)-1{\times}1$ surfaces with the oxygen vacancy ($V_O$) concentration of ~0% (p-$TiO_2(110)$) and ~5% (r-$TiO_2(110)$), respectively. On both surfaces, non-dissociative adsorption of $NH_3$ was inferred from a quantitative analysis on the amount of adsorbed $NH_3$ and those desorbed. With increasing coverage, the monolayer desorption feature shifted from 400 K toward lower temperatures until it saturates at 160 K, suggesting a repulsive nature in the interaction between $NH_3$ molecules. At the very low coverage regime, the desorption features were found to extend up to 430 K and 400 K on p-$TiO_2(110)$ and p-TiO(110), respectively. As a result, the saturation coverage of monolayer of $NH_3$ was higher on the p-$TiO_2(110)$ surface than on the p-TiO(110) by about 10%. The desorption energy ($E_d$) of $NH_3$ obtained by inversion of the Polanyi-Wigner equation indicated that the difference between the $E_d$'s of $NH_3$ (that is, $E_d(on\;p-TiO_2(110)$) - $E_d$(on p-TiO(110)) was 14 kJ/mol at ${\theta}(NH_3)=0$ and decreased to 0 as the coverage approached to a monolayer. The observed adsorption behavior of $NH_3$ was interpreted using an interaction model between $NH_3$ and surface defects on $TiO_2$ such as VO's and $Ti^{3+}$ interstitials.

  • PDF

The Effect of Calcination/reduction Condition Over Ru/TiO2 on the NH3-SCO Reaction Activity (소성/환원 조건이 Ru/TiO2의 NH3-SCO 반응활성에 미치는 영향)

  • Shin, Jung Hun;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.108-114
    • /
    • 2020
  • In this study, NH3-selective catalytic oxidation (SCO) efficiencies according to calcination/reduction conditions were compared when preparing various Ru[1]/TiO2 catalysts. The Ru[1]/TiO2 red catalyst had better NH3 conversion and NH3 to N2 conversion than those of Ru[1]/TiO2 cal. Physico-chemical properties of Ru[1]/TiO2 catalysts were confirmed by Brunauer Emmett Teller (BET), X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and temperature programmed reduction (H2-TPR) analyses, and the properties were shown to affect the dispersion and surface adsorption oxygen species (Oβ) ratio of the active metal.

Synthesis and Characterization of Guanidine Dinitramide Crystal (구아니딘 디나이트라아마이드 결정의 합성 및 특성 분석)

  • Kim, Wooram;Kwon, Younja;Jo, Youngmin;Park, Youngchul
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.737-742
    • /
    • 2015
  • An environmentally favorable solid oxidizer, guanidine dinitramide ($H_2C(NH_2)NH_2N(NO_2)_2$), with high purity and synthesis yield was prepared using guanidine carbonate ($NH_2C(=NH)NH_2{\cdot}1/2H_2CO_3$). Two different crystalline forms (${\alpha}$-form and ${\beta}$-form) were obtained depending on the solvent used and synthesis process. Despite of the same chemical composition, Raman-IR and TGA-DSC revealed that different structures existed between them. In particular, the thermal analysis showed the exothermic temperature of ${\alpha}$-form at $155.7^{\circ}C$ while $191.6^{\circ}C$ for ${\beta}$-form. The caloric value of ${\alpha}$-form was 536.4 J/g which was 2.5 times larger than that of ${\beta}$-form, 1310 J/g. In addition, ${\alpha}$-form was steeply decomposed with one-step variation, but ${\beta}$-form followed a two-step thermal decomposition pattern.

Preparation and Structure of trans-Bis(tert-butylamine)dichloropalladium(II), trans-[$PdCl_2(t-BuNH_2)_2$] (trans-Bis(tert-butylamine)dichloropalladium(II), trans-[$PdCl_2(t-BuNH_2)_2$의 합성 및 구조)

  • 김혜진;한원석;이순원
    • Korean Journal of Crystallography
    • /
    • v.12 no.1
    • /
    • pp.10-13
    • /
    • 2001
  • Compound PdCl₂(PhCN)₂(1) reacted with tert-butylamine(t-BuNH₂) to give trans-[PdCl₂(t-BuNH₂)₂] (2) Compound 2 was characterized by spectroscopy (¹H-NMR, /sup 13/C{¹H}-NMR, and IR) and X-ray diffraction. Crystallographic data for f2: monoclinic space group p2₁/c, a=6.298(1)Å, b=20.740(2)Å, c=10.731(1)Å, β=92.58(1)°, Z=4, R(wR₂)=0.0207(0.0543).

  • PDF

Preparation Mechanism of Glycoprotein by Periodate-oxidized Soluble Starch and Maltooligosaccharides (과요오드산 산화당에 의한 인공단백질의 조제 메카니즘)

  • Ann, Yong-Geun
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.482-487
    • /
    • 1999
  • Periodate-oxidized soluble starch and maltohexaose reacted with ${\alpha}-NH_2$ group of free amino acids and ${\varepsilon}-NH_2$ group of peptidyl lysine. The result shows that periodate-oxidized soluble starch and maltooligosaccharides reacted with protein and formed Schiff base between CHO group of oxidized sugar and ${\varepsilon}-NH_2$ group of surface lysine of protein molecule. Carbon and hydrogen composition of sweet potato ${\beta}-amylase$ modified with oxidized soluble starch increased and it's nitrogen composition decreased. Carbohydrate contents of sweet potato ${\beta}-amylase$ modified with oxidized soluble starch were 13.2% (pentamer), 13.4% (monomer), and with oxidized maltohexaose were 9.7% (pentamer), 9.3% (monomer) by $phenol-H_2SO_4$ method. Alpha-amino group of N-terminal, and ${\varepsilon}-NH_2$ group of lysine, of sweet potato ${\beta}-amylase$ were reacted with oxidized soluble starch by dinitrophenylation were 70% (pentamer), 73% (monomer) and 33% (pentamer), 26% (monomer), respectively, in comparison with native enzyme.

  • PDF

The Plasma Chemistry and Particle Growth in the Low Temperature Plasma Reactor for removal of NOx (NOx 제거용 저온 플라즈마 반응기에서의 플라즈마 화학 및 입자 성장)

  • Kim, Dong-Joo;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.331-341
    • /
    • 1999
  • We analyzed theoretically the removal efficiency and the particle growth inside the pulse corona discharge reactor to remove $NO_x$ and investigated the effects of process variables such as the NO and $NH_3$ input concentrations. Most of NO is converted into $NO_2$ and $HNO_3$ and the $HNO_3$ reacts with $NH_3$ to form the $NH_4NO_3$ particles. About 6.4% of NO is converted into $HNO_2$ which form the $NH_4NO_2$ particles by reaction with $NH_3$. Some of $NO_2$ follows the reaction pathway to form $NO_3$ and $N_2O_5$. The amount of particles formed inside the reactor is basically determined by the input $NH_3$ concentration. The ratio of NO to $NH_3$ affects the reactor length for particle formation significantly. The higher the input concentrations of NO and $NH_3$ are, the faster the particles grow.

  • PDF

Synthesis and Structures of $(NH_4)_{10}[Ni(H_2O)_5]_4[V_2P_2BO_{12}]_6{\cdot}nH_2O$ and $(NH_4)_{3.5}(C_3H_{12}N_2)_{3.5}[Ni(H_2O)_6]_{1.25}{[Ni(H_2O)_5]_2[V_2P_2BO_{12}]_6{\cdot}nH_2O$

  • Yun, Ho-Seop;Do, Jung-Hwan
    • Korean Journal of Crystallography
    • /
    • v.15 no.1
    • /
    • pp.35-39
    • /
    • 2004
  • Two new nickel vanadium borophosphate cluster compounds, $(NH_4)_{10}[Ni(H_2O)_5]_4[V_2P_2BO_{12}]_6{\cdot}nH_2O$ (1) and $(NH_4)_{3.5}(C_3H_{12}N_2)_{3.5}[Ni(H_2O)_6]_{1.25}{[Ni(H_2O)_5]_2[V_2P_2BO_{12}]_6{\cdot}nH_2O$ (2) have been synthesized and structurally characterized. Inter-diffusion methods were employed to prepare the compounds. The cluster anion $[(NH_4)\;{\supset}\;V_2P_2BO_{12}]_6$ is used as a building unit in the synthesis of new compounds containing $Ni(H_2O){^{2+}_5}$ in the presence of pyrazine and 1,3-diaminopropane. Compounds contain isolated cluster anions with general composition ${[Ni(H_2O)_5]_n[(NH_4)\;{\supset}\;V_2P_2BO_{12}]_6}^{-(17-2n)}$ (n = 2, 4). Crystal data: $(NH_4)_{10}[Ni(H_2O)_5]_4[V_2P_2BO_{12}]_6{\cdot}nH_2O$, monoclinic, space group C2/m (no. 12), a = 27.538(2) ${\AA}$, b = 20.366(2) ${\AA}$, c = 11.9614(9) ${\AA}$, ${\beta}$ = 112.131(1)$^{\circ}$, Z = 8; $(NH_4)_{3.5}(C_3H_{12}N_2)_b[Ni(H_2O)_6]_{3.5}{[Ni(H_2O)_5]_2[V_2P_2BO_{12}]_6{\cdot}nH_2O$, triclinic, space group P-1 (no. 2), a = 17.7668(9) ${\AA}$, b = 17.881(1) ${\AA}$, c = 20.668(1) ${\AA}$, ${\alpha}$ = 86.729(1)$^{\circ}$, ${\beta}$ \ 65.77(1)$^{\circ}$, ${\gamma}$ = 80.388(1)$^{\circ}$, Z = 2.

The Emission of NO2 and NH3 in Selective Catalytic Reduction over Manganese Oxide with NH3 at Low Temperature (망간계 금속산화물을 이용한 저온 선택적 촉매 환원 반응에서 NO2와 NH3 배출)

  • Kim, Sung Su;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.18 no.3
    • /
    • pp.255-261
    • /
    • 2007
  • The catalytic behavior of the manganese oxides was studied for the selective catalytic reduction with ammonia at a low temperature condition under $200^{\circ}C$. Outlet unreacted ammonia increases with decreasing temperature and increasing $NH_3/NOx$ mole ratio, however $NO_2$ shows an opposite result. $NO_2$ is generated by the adsorption of NO on the catalyst and the following oxidization to nitrates. Unreacted NH3 slip is not observed even at the $NH_3/NOx$ feed ratio above 1.0 due to the reaction between formed nitrates on the catalyst and adsorbed ammonia. The addition of Zr increases $NO_2$ generation, whereas the addition of CeO2 on the catalyst decreases $NO_2$ generation. Furthermore, the additon of the metal oxide induce DeNOx efficiency to reduce.

Studies on the Development of Iodine Recovery Process with High Yield and Purity from NH4I Solution (NH4I 용액으로부터 고효율/고순도의 요오드 회수 공정개발에 관한 연구)

  • Yoon, Jong Sun;Lim, Seong Bin;Oh, Se Yong
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.377-380
    • /
    • 2015
  • In this paper, we have investigated the optimization of $I_2$ recovery process from $NH_4I$ solution, which is generated as by-product during the amination reaction of p-diiodobenzene (PDIB) for p-phenylenediamine (PPD) synthesis. The recovered $I_2$ is then recycled as a raw material for PDIB synthesis. We have employed a cation exchange resin to recover $I_2$ from $NH_4I$ sample solution, and determined the breakthrough point and exchange capacity from the breakthrough curve. Furthermore, we have suggested optimum conditions of our $I_2$ recovery process by measuring the purity and yield of recovered $I_2$ with respect to the concentrations of $NH_4I$ and oxidant ($H_2O_2$) solutions, the oxidation time, and the temperature of drying process. Finally, the yield and purity as high as 94.96% and 96.65%, respectively were obtained by reusing the residual solution still containing unrecovered iodide ions.

Conductances of 1-1 Electrolytes in Ethylene Carbonate (탄산에틸렌에서의 1-1 전해질의 전기전도도에 관한 연구)

  • Si-Joong Kim;Joo-Whan Chang;Jin-Ho Kim;Soon-Hee Kang
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.4
    • /
    • pp.237-242
    • /
    • 1979
  • The equivalent conductances of sodium, potassium, ammonium, tetramethylammonium, triethylammonium, diethylammonium and ethylammonium iodide, and picrate salts of sodium and potassium in ethylene carbonate have been measured at 40.0 $^{\circ}C. The limiting equivalent conductances of the salts have been computed by Fuoss-Onsager-Skinner equation. The limiting ionic equivalent conductances of $Na^+,\;K^+,\;and\;NH^+$ are in order of $Na^+ which is the reverse order of solvation for the ions in any solution, And the order of limiting ionic equivalent conductances for alkylammonium ions is $(C_2H_5)_4N^+<(C_2H_5)_3NH^+<(CH_3)_4N^+<(C_2H_5)_2NH_2^+<(C_2H_5)NH_3^+$ which coincides with the order of mass transfer. From the dissociation constants of the saltss determinde by Fuoss-Kraus method, it is found that ethyene carbonate is a good ionizing solvent for the salts. In addition, Stokes radii and effective fadii of ions have been calculated by Stokes law and Nightingale method, repectively. From the results, it appears tha alkylammonium ions and picrate ion seem to be not solvated, and tha iodide ion is fairly solvated in ethylene carbonate.

  • PDF