• 제목/요약/키워드: NFAT2

검색결과 37건 처리시간 0.022초

Triterpenoids from Acanthopanax koreanum Root and Their Inhibitory Activities on NFAT Transcription

  • Cai, Xing-Fu;Lee, Im-Seon;Shen, Guanghai;Dat, Nguyen-Tien;Lee, Jung-Joon;Kim, Young-Ho
    • Archives of Pharmacal Research
    • /
    • 제27권8호
    • /
    • pp.825-828
    • /
    • 2004
  • Two triterpenoids (1,4) and two triterpenoid glycosides (2,3) were isolated from the root of Acanthopanax koreanum (Araliaceae). Their structures were identified as impressic acid (1), acankoreoside A (2), 3-epi-betulinic acid 28-O-[(${\alpha}-L-rhamnopyranosyl(1{\rightarrow}4)-{\beta}-D-glucopyrano-syl(1{\rightarrow}6)]-{\beta}-D-glucopyranosyl]$ ester (3), and ursolic acid (4) by physicochemical and spectro-scopic methods. Of these compounds, impressic acid (1) exhibited a potent inhibitory activity against NFAT transcription factor ($IC_{50}:{\;}12.65{\;}{\mu\textrm{m}}$).

비만세포에서 은행잎 플라보놀에 의한 Th2 Cytokine 발현 및 신호전달 억제 기전 효과 (Suppressive effects of Th2 cytokines expression and the signal transduction mechanism in MC/9 mast cells by flavonol derived from Ginkgo biloba leaves)

  • 권혜영;정규진;정광조
    • 디지털융복합연구
    • /
    • 제13권8호
    • /
    • pp.503-514
    • /
    • 2015
  • 은행잎 유래 플라보놀 성분이 갖는 항아토피 활성에 대해 입증된 바는 드물다. 이 논문에서는 MC/9 비만세포에서의 은행잎 플라보놀의 항아토피 효과를 조사하기 위하여 ELISA와 Real-time PCR, western blot으로 은행잎 플라보놀을 분석하였다. 분석 결과 IL-13, MIP-1a의 생성량은 농도 의존적으로 현저하게 감소되었으며 IL-4, IL-5, IL-13, TNF-a 유전자 발현량은 25, 50, $100{\mu}g/m{\ell}$의 농도에서 효과적으로 억제되었다. western blot 분석 결과 c-jun과 NFAT-1단백질 발현이 감소되었음을 확인하였다. 이러한 결과들은 은행잎 유래 플라보놀 성분이 NFAT-1, c-jun 전사인자의 전사를 억제함으로써 MC/9 비만세포에서의 Th2 싸이토카인의 생성을 감소시키는 효과를 갖는 것을 나타낸다. 따라서 은행잎 유래 플라보놀 성분이 아토피 피부염 치료제로서 활용가능성이 있음을 보고하고자 한다.

PKD2 interacts with Lck and regulates NFAT activity in T cells

  • Li, Qing;Sun, Xiaoqing;Wu, Jun;Lin, Zhixin;Luo, Ying
    • BMB Reports
    • /
    • 제42권1호
    • /
    • pp.35-40
    • /
    • 2009
  • Protein kinase D2 (PKD2) is a member of the PKD serine/threonine protein kinase family that has been implicated in the regulation of a variety of cellular processes including proliferation, survival, protein trafficking and immune response. In the present study, we report a novel interaction between PKD2 and Lck, a member of the Src tyrosine protein kinase family that is predominantly expressed in T cells. This interaction involved the C-terminal kinase domains of both PKD2 and Lck. Moreover, co-expression of Lck enhanced the tyrosine phosphorylation of PKD2 and increased its kinase activity. Finally, we report that PKD2 enhanced T cell receptor (TCR)-induced nuclear factor of T cell (NFAT) activity in Jurkat T cells. These results suggested that Lck regulated the activity of PKD2 by tyrosine phosphorylation, which in turn may have modulated the physiological functions of PKD2 during TCR-induced T cell activation.

Phenolic Constituents with Inhibitory Activity against NFAT Transcription from Desmos chinensis

  • Kiem Phan Van;Minh Chau Van;Huang Hoang Thanh;Lee Jung Joon;Lee Im Seon;Kim Young Ho
    • Archives of Pharmacal Research
    • /
    • 제28권12호
    • /
    • pp.1345-1349
    • /
    • 2005
  • Six phenolic constituents, 2-methoxybenzyl benzoate (1), negletein (2), 2',3'-dihydroxy-4',6'­dimethoxydihydrochalcone (3), 5,6-dihydroxy-7-methoxy-dihydroflavone (4), astilbin (5), and quercitrin (6) were isolated from the methanol extract of the dried leaves of Desmos chinensis. Their structures were elucidated from spectral and chemical data. Of these constituents, compounds 2 ($IC_{50}$: 3.89 $\pm$ 0.39 $\mu$M) and 3 ($IC_{50}$: 9.77 $\pm$ 0.26 $\mu$M) exhibited potent inhibitory activity against nuclear factor of activated T cells (NFAT) transcription factor, and compound 1 ($IC_{50}$: 28.4 $\pm$ 2.62 $\mu$M) exhibited moderate inhibitory activity.

비만세포에서 연교(連翹) 추출물의 Th2 사이토카인 발현 및 신호전달 기전 억제 효과 (The Suppressive Effect of Th2 Cytokines Expression and the Signal Transduction Mechanism in MC/9 Mast Cells by Forsythiae Fructus Extracts)

  • 이진화;한재경;김윤희
    • 대한한방소아과학회지
    • /
    • 제28권3호
    • /
    • pp.31-46
    • /
    • 2014
  • Objectives Forsythiae Fructus treatment has been used for inflammatory and allergic diseases in Korean Medicine. Nevertheless, the mechanism of action and the cellular targets are not understood well. The pathogenesis of allergic diseases are associated with Th2 cytokines such as IL-13, MIP-$1{\alpha}$, IL-13, IL-5, GM-CSF, IL-4, TNF-${\alpha}$ and IL-6, which are secreted by the mast cells. This study was conducted to investigate the effects of Forsythiae Fructus extracts (FF) on Th2 cytokines expression and signal transduction in MC/9 mast cells. Methods In the study, MC/9 mast cells were stimulated with DNP-IgE for 24 hours and then treated separately with CsA $10{\mu}g/m{\ell}$ and varying doses of FF for one hour. MC/9 mast cells stimulated with DNP-IgE was the control group, a treatment with CsA was the positive control group and a treatment with varying doses FF was the experimental groups. The mRNA levels of IL-13, IL-5, GM-CSF, IL-4, TNF-${\alpha}$, IL-6 were analyzed with Real-time PCR. The levels of IL-13, MIP-$1{\alpha}$ were measured using enzyme-linked immunosorbent assays(ELISA). NFAT, AP-1 and NF-${\kappa}B$ p65 were examined by Western blot analysis. Results 1. FF were observed to suppress the mRNA expression of IL-13, IL-5, GM-CSF, IL-4, TNF-${\alpha}$, IL-6 in comparison to DNP-IgE control group. 2. FF also has inhibited the IL-13, MIP-$1{\alpha}$ production significantly in comparison to DNP-IgE control group. 3. Western blot analysis of transduction factors involving Th2 cytokines expression has revealed a prominent decrease of the mast cell specific transduction factors including NFAT-1, NFAT-2, c-Jun, and NF-${\kappa}B$ p65 but c-Fos. Conclusions In conclusion, the anti-allergenic activities of FF may be strongly related to the regulation of transcription factors NFAT-1, NFAT-2, c-Jun, and NF-${\kappa}B$ p65 causing inhibition of Th2 cytokines in mast cells.

CoMFA and CoMSIA on the Inhibition of Calcineurin-NFAT Signaling by Blocking Protein-Protein Interaction with N-(4-Oxo-1(4H)-naphthalenylidene)benzenesulfonamide Derivatives

  • Myung, Pyung-Keun;Park, Kyung-Yong;Sung, Nack-Do
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권12호
    • /
    • pp.1941-1945
    • /
    • 2005
  • To raises the possibility of designing effective inhibitors, 3D-QSAR for the inhibition of calcineurin-NFAT signaling by new N-(4-oxo-1(4H)-naphthalenylidene benzenesulfonamide derivatives as inhibitors of intracellular protein-protein interactions were studied using CoMFA and CoMSIA methodology. The three templates, N-(4-oxo-1(4H)-naphthalenylidene)benzenesulfonamide (A), benzenesulfonamide (B) and 4-oxo-1(4H)-naphthalenylidene (C) were selected to improve the statistic of the present 3D-QSAR models. The best models with combination of standard field in CoMFA, and steric field and electrostatic field in CoMSIA derived from the template, B and C, because most of the compounds tend not to be aligned in template A. From the based on the CoMFA and CoMSIA contour maps, the $R_1$ and $R_2$ groups on 4-oxo-1(4H) naphthalenylidene ring are steric favor. The ortho position on the benzenesulfonyl ring is steric disfavor and the meta position is steric favor. In addition, the oxygene atom of carbonyl group will have better inhibition activities as it has a negative charge favor. From these findings, we can conclude that the analyses of the contour maps provided insight into possible modification of molecules for effective inhibitiors.

Ginsenoside Rg1 treatment protects against cognitive dysfunction via inhibiting PLC-CN-NFAT1 signaling in T2DM mice

  • Xianan Dong ;Liangliang Kong ;Lei Huang ;Yong Su ;Xuewang Li;Liu Yang;Pengmin Ji ;Weiping Li ;Weizu Li
    • Journal of Ginseng Research
    • /
    • 제47권3호
    • /
    • pp.458-468
    • /
    • 2023
  • Background: As a complication of Type II Diabetes Mellitus (T2DM), the etiology, pathogenesis, and treatment of cognitive dysfunction are still undefined. Recent studies demonstrated that Ginsenoside Rg1 (Rg1) has promising neuroprotective properties, but the effect and mechanism in diabetes-associated cognitive dysfunction (DACD) deserve further investigation. Methods: After establishing the T2DM model with a high-fat diet and STZ intraperitoneal injection, Rg1 was given for 8 weeks. The behavior alterations and neuronal lesions were judged using the open field test (OFT) and Morris water maze (MWM), as well as HE and Nissl staining. The protein or mRNA changes of NOX2, p-PLC, TRPC6, CN, NFAT1, APP, BACE1, NCSTN, and Ab1-42 were investigated by immunoblot, immunofluorescence or qPCR. Commercial kits were used to evaluate the levels of IP3, DAG, and calcium ion (Ca2+) in brain tissues. Results: Rg1 therapy improved memory impairment and neuronal injury, decreased ROS, IP3, and DAG levels to revert Ca2+ overload, downregulated the expressions of p-PLC, TRPC6, CN, and NFAT1 nuclear translocation, and alleviated Aβ deposition in T2DM mice. In addition, Rg1 therapy elevated the expression of PSD95 and SYN in T2DM mice, which in turn improved synaptic dysfunction. Conclusions: Rg1 therapy may improve neuronal injury and DACD via mediating PLC-CN-NFAT1 signal pathway to reduce Aβ generation in T2DM mice.

ZNF424, a novel human KRAB/C2H2 zinc finger protein, suppresses NFAT and p21 pathway

  • Wang, Yuequn;Zhou, Junnei;Ye, Xiangli;Wan, Yongqi;Li, Youngqing;Mo, Xiaoyan;Yuan, Wuzhou;Yan, Yan;Luo, Na;Wang, Zequn;Fan, Xiongwei;Deng, Yun;Wu, Xiushan
    • BMB Reports
    • /
    • 제43권3호
    • /
    • pp.212-218
    • /
    • 2010
  • Zinc finger-containing transcription factors are the largest single family of transcriptional regulators in mammals, which play an essential role in cell differentiation, cell proliferation, apoptosis, and neoplastic transformation. Here we have cloned a novel KRAB-related zinc finger gene, ZNF424, encoding a protein of 555aa. ZNF424 gene consisted of 4 exons and 3 introns, and mapped to chromosome 19p13.3. ZNF424 gene was ubiquitously expressed in human embryo tissues by Northern blot analysis. ZNF424 is conserved across species in evolution. Using a GFP-labeled ZNF424 protein, we demonstrate that ZNF424 localizes mostly in the nucleus. Transcriptional activity assays shows ZNF424 suppresses transcriptional activity of L8G5-luciferase. Overexpression of ZNF424 in HEK-293 cells inhibited the transcriptional activity of NFAT and p21, which may be silenced by siRNA. The results suggest that ZNF424 protein may act as a transcriptional repressor that suppresses NFAT and p21 pathway to mediate cellular functions.

MC/9 비만세포에서 행인(杏仁) 추출물의 Th2 cytokine 발현 억제 효과 및 신호전달 기전 연구 (The Suppressive Effect on Th2 Cytokines Expression and the Signal Transduction Mechanism in MC/9 Mast Cells by PRAL)

  • 강기연;한재경;김윤희
    • 대한한방소아과학회지
    • /
    • 제28권2호
    • /
    • pp.23-39
    • /
    • 2014
  • Objectives PRAL (Prunus armniaca Linne Var) is a herbal formula in Oriental Medicine, known for its anti-inflammatory and anti-allergenic properties. However, its mechanism of action and the cellular targets have not yet been found enough. The purpose of this study is to investigate the effects of PRAL on Th2 cytokines expression in MC/9 mast cells. Methods The effect of PRAL was analyzed by ELISA, Real-time PCR, Western blot in MC/9 mast cells. mRNA levels of GM-CSF, IL-4, IL-5, IL-6, IL-13, TNF-${\alpha}$ were analyzed with Real-time PCR. Levels of IL-13, MIP-$1{\alpha}$ were measured using enzyme-linked immunosorbent assays (ELISA). NFAT, AP-1 and NF-${\kappa}B$ p65 were examined by Western blot analysis. Results PRAL inhibited GM-CSF, IL-4, IL-5, IL-6, IL-13, TNF-${\alpha}$ mRNA expression in a dose dependent manner. GM-CSF, IL-4, IL-5 mRNA expression were inhibited significantly in comparison to DNP-IgE control group at concentration of 100 ${\mu}g/ml$ and IL-6, IL-13, TNF-${\alpha}$ mRNA expression were inhibited at concentration of 50 ${\mu}g/ml$, 100 ${\mu}g/ml$. PRAL also inhibited the IL-13, MIP-$1{\alpha}$ production significantly in comparison to DNP-IgE control group in a dose dependent manner. IL-13 production was inhibited at a concentration of 200 ${\mu}g/ml$, 400 ${\mu}g/ml$ and MIP-$1{\alpha}$ was inhibited at a concentration of 100 ${\mu}g/ml$, 200 ${\mu}g/ml$, 400 ${\mu}g/ml$. Western blot analysis of transcription factors involving Th2 cytokines expression revealed prominent decrease of the mast cell specific transcription factors including NFAT-1, c-Jun as well as NF-${\kappa}B$ p65 but not NFAT-2 and c-Fos. Conclusion These results indicate that PRAL has the effect of suppressing Th2 cytokines production in the MC/9 mast cells. These data represent that PRAL potentiates therapeutic activities to the allergic disease by regulating Th2 cytokines in the MC/9 mast cells.

청기거양탕(淸肌祛痒湯)의 RBL-2H3 비만세포와 OVA/alum 감작 생쥐의 알레르기 염증 반응 억제 효과 (Suppressive Effect of CheongGiGeoYangTang on Allergic Inflammation of RBL-2H3 Mast Cells and OVA/alum-sensitized Mice)

  • 이혜림;한재경;김윤희
    • 대한한방소아과학회지
    • /
    • 제26권1호
    • /
    • pp.1-15
    • /
    • 2012
  • $CheongGiGeoYangTang$ has been used for anti-allergenic purpose. However there was no experimental study about its effect. Therefore, this study was designed to investigate the anti-allergenic effect of $CheongGiGeoYangTang$. Methods Modifiability of RBL-2H3 mast cells' IL-4, IL-13 was analyzed by qRT-PCR and ELISA. Also, the suppressive effect of GATA-1, GATA-2, NF-AT1, NF-AT2, AP-1 and NF-${\kappa}B$ p65 transcription factors was observed by western blotting. OVA-specific IgE, IL-4 and IL-13 production in ovalbumin allergy model was examined as well. Results It was showed that the RBL-2H3 mast cells treated with $CheongGiGeoYangTang$ extract(CGGYT) was significantly suppressed mRNA expression, production of IL-4 and IL-13, and prominently inhibited the expression of transcription factors including GATA-1, GATA-2, NFAT-1, NFAT-2, c-Fos and NF-${\kappa}B$ p65 but not c-Jun. The administration of CGGYT was suppressed the amount of OVA-specific IgE, IL-4 and IL-13 in OVA/alum-sensitized mice. Conclusions We considered CGGYT would regulate the allergic inflammation as inhibition of IL-4 and IL-13 production in activated mast cells and Th2 cells.