• 제목/요약/키워드: NFAT

검색결과 58건 처리시간 0.02초

전사인자의 핵 전이 억제를 통한 영계출감탕의 면역 억제 효과 (The Immunosuppressive Effect of Younggaechulgam-tang through Inhibition of Nuclear Translocation of Transcription Factor)

  • 홍철희;김남권;이수형;두인선;황충연
    • 한방안이비인후피부과학회지
    • /
    • 제16권2호
    • /
    • pp.119-137
    • /
    • 2003
  • Younggaechulgam-tang has been used for treating skin diseases. In this study, I investigated the immunosuppressive effect of Younggaechul-tang in the human T cell line MOLT-4 cells. MOLT-4 cells were stimulated with the phytohemagglutinin (PHA) and phorbol 12-myristate 13-acetate (PMA) + A23187. The secretion appeared to be greater when cells were stimulated with PHA than with PMA + A23187. Younggaechulgam-tang had no affect proliferation stimulated by PHA. I showed that IL-2 secretion and expression by PHA stimulated MOLT-4 cells were inhibited by Younggaechugam-tang treatment. Maximal inhibition rate of IL-2, TNF-${\alpha}$ secretion was 80$\%$ and 30$\%$, respectively. Younggaechulgam-tang also inhibited nuclear translocation of p65 subunit of nuclear factor-kB and nuclear factor of activated T cells (NFAT). In conclusion, these results suggest that Younggaechulgam-tang may contribute to the immunosuppressive oriental drug clinically.

  • PDF

Silibinin Inhibits Osteoclast Differentiation Mediated by TNF Family Members

  • Kim, Jung Ha;Kim, Kabsun;Jin, Hye Mi;Song, Insun;Youn, Bang Ung;Lee, Junwon;Kim, Nacksung
    • Molecules and Cells
    • /
    • 제28권3호
    • /
    • pp.201-207
    • /
    • 2009
  • Silibinin is a polyphenolic flavonoid compound isolated from milk thistle (Silybum marianum), with known hepatoprotective, anticarcinogenic, and antioxidant effects. Herein, we show that silibinin inhibits receptor activator of $NF-{\kappa}B$ ligand (RANKL)-induced osteoclastogenesis from RAW264.7 cells as well as from bone marrow-derived monocyte/macrophage cells in a dose-dependent manner. Silibinin has no effect on the expression of RANKL or the soluble RANKL decoy receptor osteoprotegerin (OPG) in osteoblasts. However, we demonstrate that silibinin can block the activation of $NF-{\kappa}B$, c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein (MAP) kinase, and extracellular signal-regulated kinase (ERK) in osteoclast precursors in response to RANKL. Furthermore, silibinin attenuates the induction of nuclear factor of activated T cells (NFAT) c1 and osteoclast-associated receptor (OSCAR) expression during RANKL-induced osteoclastogenesis. We demonstrate that silibinin can inhibit $TNF-{\alpha}$-induced osteoclastogenesis as well as the expression of NFATc1 and OSCAR. Taken together, our results indicate that silibinin has the potential to inhibit osteoclast formation by attenuating the downstream signaling cascades associated with RANKL and $TNF-{\alpha}$.

Effect of interferon-γ on the fusion of mononuclear osteoclasts into bone-resorbing osteoclasts

  • Kim, Jeung-Woo;Lee, Myeung-Su;Lee, Chang-Hoon;Kim, Ha-Young;Chae, Soo-Uk;Kwak, Han-Bok;Oh, Jae-Min
    • BMB Reports
    • /
    • 제45권5호
    • /
    • pp.281-286
    • /
    • 2012
  • Osteoclasts are multinucleated cells that are formed by the fusion of pre-fusion osteoclasts (pOCs). The fusion of pOCs is known to be important for osteoclastic bone resorption. Here, we examined the effect of IFN-${\gamma}$ on the fusion of pOCs. IFN-${\gamma}$ greatly increased the fusion of pOCs in a dose-dependent manner. Furthermore, IFN-${\gamma}$ induced pOC fusion even in hydroxyapatite-coated plates used as a substitute for bone. The resorption area of pOCs stimulated with IFN-${\gamma}$ was significantly higher than that of the control cells. IFN-${\gamma}$ induced the expression of dendritic cell-specific transmembrane protein (DC-STAMP), which is responsible for the fusion of pOCs. IFN-${\gamma}$ enhanced DC-STAMP expression in a dose-dependent manner. The mRNA expression of c-Fos and nuclear factor of activated T cells (NFAT) c1 was enhanced in the pOCs treated with IFN-${\gamma}$. Taken together, these results provide a new insight into the novel role of IFN-${\gamma}$ on the fusion of pOCs.

치주인대세포의 골모세포 분화에서 NFATc1의 역할 (The Role of NFATc1 on Osteoblastic Differentiation in Human Periodontal Ligament Cells)

  • 이상임
    • 치위생과학회지
    • /
    • 제15권4호
    • /
    • pp.488-494
    • /
    • 2015
  • 치주인대세포의 효과적인 조절은 성공적인 치주 조직 재생에 중요한 역할을 한다. NFATc1의 활성화가 골모세포에서 분화를 자극하지만, 치주인대세포가 골모세포로 분화하는 과정에서 NFATc1의 역할은 아직 보고되지 않았다. 본 연구는 hPDLCs가 골모세포로 분화하는 동안 NFATc1의 mRNA의 발현과 단백질 발현이 유도됨을 처음으로 확인하였다. CsA에 의한 NFATc1의 억제는 세포증식을 감소시켰다. 게다가, CsA를 처리한 결과, 분화표지자, ALP activity 및 광화결정형성을 감소시켰다. 이러한 연구 결과는 NFATc1이 치주 재생을 위한 골모세포 분화에 중요한 조절자 역할을 할 수 있을 것으로 생각된다.

파골세포의 분화와 뼈 흡수에 천남성의 억제 효과 (Inhibitory Effects of Rhizoma Arisaematis on Osteoclast Differentiation and Bone Resorption)

  • 이명수;이창훈;박기인;김하영
    • 동의생리병리학회지
    • /
    • 제25권1호
    • /
    • pp.65-70
    • /
    • 2011
  • Osteoclasts play a critical role in bone-related diseases such as osteoporosis and rheumatoid arthritis by resorbing the bone. Recently, natural products from plants have been extensively studied as therapeutic drugs to treat and prevent various diseases. Here, we examined the effects of rhizoma arisaematis on ostoclast differentiation and bone resorption. We showed that rhizoma arisaematis significantly suppressed receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation in bone marrow-derived macrophages (BMMs) in a dose dependent manner but have little or no effect on the cytotoxicity of BMMs and RAW264.7 cells. We found that rhizoma arisaematis iarrow-ed the RANKL-induced c-Fos and nuclear factor of activated T cells (NFAT)c1, which is a master regulator of osteoclast differentiation. Furthermore, rhizoma arisaematis suppressed the mRNA expression of tartrate resistant-acid phosphatase and cathepsin K iaduced by RANKL in BMMs. in y chanistic studies, rhizoma arisaematis considerably iarrow-ed I-${\kappa}B$ degradation, which is a negative regulator of NF-${\kappa}B$, but iaduced the phosphderlation of p-38, ERK, and JNK.MMlso, we found that rhizoma arisaematis significantly iarrow-ed osteoclastic bone resorption. Taken tarether, our results suggest that rhizoma arisaematis suppresses osteoclast differentiation through down-regulatd the mRANKL-induced c-Fos and NFATc1 expression and iarrow-s bone resorption.

Signaling Through the Murine T Cell Receptor Induces IL-17 Production in the Absence of Costimulation, IL-23 or Dendritic Cells

  • Liu, Xikui K.;Clements, James L.;Gaffen, Sarah L.
    • Molecules and Cells
    • /
    • 제20권3호
    • /
    • pp.339-347
    • /
    • 2005
  • IL-17 (IL-17A or CTLA-8) is the founding member of a novel family of inflammatory cytokines, and emerging evidence indicates that it plays a central role in inflammation and autoimmunity. IL-17 is made primarily, if not exclusively by T cells, but relatively little is known about how its expression is regulated. In the present study, we examined the requirements and mechanisms for IL-17 expression in primary mouse lymphocytes. Like many cytokines, IL-17 is induced rapidly in primary T cells after stimulation of the T cell receptor (TCR) through CD3 crossinking. Surprisingly, however, the pattern of regulation of IL-17 is different in mice than in humans, because "costimulation" of T cells through CD28 only mildly enhanced IL-17 expression, whereas levels of IL-2 were dramatically enhanced. Similarly, several other costimulatory molecules such as ICOS, 4-1BB and CD40L exerted only very weak enhancing effects on IL-17 production. In agreement with other reports, IL-23 enhanced CD3-induced IL-17 expression. However, IL-17 production can occur autonomously in T cells, as neither dendritic cells nor IL-23 were necessary for promoting short-term production of IL-17. Finally, to begin to characterize the TCR-mediated signaling pathway(s) required for IL-17 production, we showed that IL-17 expression is sensitive to cyclosporin-A and MAPK inhibitors, suggesting the involvement of the calcineurin/NFAT and MAPK signaling pathways.

Beneficial effects of naringenin and morin on interleukin-5 and reactive oxygen species production in BALB/c mice with ovalbumin-induced asthma

  • Qi, Peng;Wei, Chunhua;Kou, Dianbo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권6호
    • /
    • pp.555-564
    • /
    • 2021
  • We investigated the effects of naringenin and morin on IL-5 and ROS production in PMA+ionomycin-treated EL-4 cells with the corroboration of their antioxidant and anti-inflammatory properties using an asthma-induced mouse model. The EL-4 cell line was used to study the outcomes of naringenin or morin, followed by cell viability studies. Western blot analysis and ELISA test were used to determine Th2 mediated cytokines. In vivo studies were carried out on BALB/c mice to induce allergic asthma using ovalbumin administered intraperitoneally. Intracellular ROS was determined using 2',7'-dichlorodihydrofluorescein diacetate, followed by serum enzymatic (AST and ALT) estimations and inflammatory cell count in the bronchoalveolar lavage fluid (BALF) and lung tissues. Histopathological studies were conducted to examine lung tissue-stained architecture. Our findings suggested that naringenin and morin significantly suppressed IL-5 and ROS production via various pathways. Interestingly, by reducing NFAT activity, naringenin and morin stimulated HO-1 expression, thereby suppressing IL-5 secretion due to regulating the transcription factor Nrf2 via P13/Akt or ERK/JNK signalling pathways in EL-4 cells, demonstrating the involvement of HO-1 expression in inhibiting asthmatic inflammation. The increased inflammatory cells in the BALF were substantially decreased by both naringenin and morin, followed by inhibition in the elevated Th-2 cytokines levels. The TNF-α protein levels in an allergic asthma mouse model were significantly reduced by suppressing Akt phosphorylation and eosinophil formation. Recent findings confirmed that naringenin and morin possess the potential to control asthma-related immune responses through antioxidant and anti-inflammatory properties, indicating potential therapeutic agents or functional foods.

부자와 육계 병용투여 시 파골세포 분화 억제에 미치는 영향 (Effect of Co-administration of Aconiti Lateralis Preparata Radix and Cinnamomi Cortex on Osteoclast Differentiation)

  • 정기은;김정영;김지훈;한상용;김윤경
    • 대한본초학회지
    • /
    • 제29권2호
    • /
    • pp.61-67
    • /
    • 2014
  • Objectives : Aconiti Lateralis Preparata Radix (Aconitum Carmichaeli, AC) and Cinnamomi Cortex (Cinnamomi Cortex, CC) have been treated to elderly for kidney yang enhancement in Korean traditional medicine. In this study, the effects of water extract of AC and CC on RANKL (Receptor Activator for Nuclear Factor ${\kappa}B$ Ligand)-induced osteoclast differentiation were evaluated in culture system. Methods : MTT assay was used to evaluate the potential cytotoxicity of AC and CC extracts in bone macrophage marrows (BMMs) stimulated with M-CSF. TRAP (tartrate-resistant acid phosphatase) staining and TRAP activity were performed to know the inhibitory effect on osteoclast differentiation. The protein expression levels of nuclear factors such as activated T cell(NFAT)c1, c-Fos, MAPKs and ${\beta}$-actin in cell lysates treated with AC and CC extracts were analysed by western blotting. Results : AC, CC extracts and their co-administration inhibited significantly RANKL-induced osteoclast differentiation in BMMs in a dose dependent manner without toxicity. Each AC and CC extracts inhibited the phosphorylation of p38. Also, AC and CC extracts, respectively, inhibited the protein expression of c-Fos and NFATc1 more than Co-administration of AC and CC even if all treatments did. It was observed that RANKL-induced degradation of I-${\kappa}B$ is significantly suppressed by all treatments. Conclusions : Taken together, It was concluded that AC and CC have beneficial effect on osteoporosis by inhibition of osteoclast differentiation. Thus, Atractylodis AC and CC could be a treatment option for osteoporosis.

RANKL에 의해 유도되는 파골세포 분화에 대한 시금치 추출물의 영향 (Effect of Spinach Extract on RANKL-Mediated Osteoclast Differentiation)

  • 김동규;김미혜;강민정;신정혜
    • 한국식품영양과학회지
    • /
    • 제44권4호
    • /
    • pp.532-539
    • /
    • 2015
  • 파골세포의 분화에 대한 시금치 추출물의 영향을 확인하고자 RANKL을 처리한 RAW264.7 세포에서 세포독성, TRAP(+) 다핵세포의 형성, 파골세포 분화 관련 유전자의 발현, 그리고 단백질 발현을 확인하였다. 물과 25, 50, 75 및 100% 에탄올 시금치 추출물의 세포독성을 측정한 결과 모든 추출물들이 $100{\mu}g/mL$ 이하의 농도에서 RAW264.7 세포에 독성을 유발하지 않았다. TRAP 염색을 통해 TRAP(+) 다핵세포의 수와 효소 활성을 측정한 결과 물 추출물을 제외한 모든 추출물이 대조군에 비해 분화 억제 및 효소 활성 저해 효과가 있었다. 특히 $100{\mu}g/mL$ 농도의 100% 에탄올 추출물은 RANKL만 처리한 대조군과 비교해 80%의 유의한 TRAP(+) 다핵세포 숫자 감소와 44%의 TRAP 효소 활성 저해율을 보였다. 시금치 에탄올 추출물은 RANKL에 의한 파골세포 분화의 지표가 되는 관련유전자인 NFAT, c-FOS, cathepsin K 및 TRAP의 발현을 억제하였다. 또한 단백질 수준에서 시금치 에탄올 추출물은 RANKL에 의해 증가된 NFATc1의 발현을 현저히 감소시키는 것으로 확인되었고, 또한 c-FOS의 활성화 형태인 인산화된 c-FOS의 발현뿐만 아니라 인산화되지 않은 비활성의 c-FOS 발현도 감소시켰다. 반면 파골세포의 분화에 직간접적인 영향을 미친다고 알려진 MAPK 중 ERK의 활성에는 거의 영향을 미치지 않는 것으로 보아 시금치 에탄올 추출물은 c-FOS의 활성, 비활성형 전체를 감소시킴으로 파골세포 분화를 감소시키는 것으로 확인되었다.

파골세포 분화에 미치는 노회(蘆會) 추출물의 효과 (Effect of Water Extract of Aloe in RANKL-induced Osteoclast Differentiation)

  • 이정휴;이명수;채수욱;김하영;문서영;전병훈;조해중
    • 동의생리병리학회지
    • /
    • 제25권6호
    • /
    • pp.1008-1013
    • /
    • 2011
  • Osteoporosis is the leading underlying cause of fractures, particularly in postmenopausal women, due to the loss of estrogen-mediated suppression of bone resorption. More than 50% of adults 50 years of age or older are estimated to have osteoporosis. Osteoclast which is main target for treatment of osteoporosis is originated from hematopoietic cell line. Aloe has been widely used in worldwide country as a coadjuvant medicine. Extracts of the leaves of Aloe have been used in condition to improve dermatologic problem such as seborrheic dermatitis, aphthous stomatitis, xerosis, lichen planus and has been known to exert anti-inflammatory, anti-oxidant and anti-tumor effects. However, despite the popularity of aloe as a plant food supplements, the evaluation of its efficacy as a possible therapeutic option for osteoporosis remains scarce. Thus, we evaluated the effect of Aloe on receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation. Here we found that Aloe significantly inhibited osteoclast differentiation induced by RANKL. Aloe suppressed the activation of p38 pathway and $NF{\kappa}B$ in bone marrow macrophages (BMMs) treated with RANKL. Also, Aloe significantly inhibited the mRNA expression of c-Fos, tartrate-resistant acid phosphatase (TRAP), osteoclast-associated receptor (OSCAR), nuclear factor of activated T cells (NFAT)c1 and cathepsin K in BMMs treated with RANKL. Particularly, Aloe greatly inhibited the protein expression of c-fos and NFATc1. Taken together, our results suggested that Aloe may be useful tool for treatment of osteoporosis by inhibition of osteoclast differentiation.