• 제목/요약/키워드: NF- κB

검색결과 680건 처리시간 0.027초

마우스 대식세포 RAW264.7 세포에서 MAPK와 NF-κB 경로를 통한 quercetin의 염증 반응 저해 활성 (Quercetin Inhibits Inflammation Responses via MAPKs and NF-κB Signaling Pathways in LPS-stimulated RAW264.7 Cells)

  • 원우영;김정태;김근호;황지영;정정욱;김종식
    • 생명과학회지
    • /
    • 제32권11호
    • /
    • pp.899-907
    • /
    • 2022
  • Quercetin은 과일과 채소에 풍부한 플라보노이드 중의 하나로써, 항산화, 항염증, 항암, 항바이러스 활성 등 다양한 약리학적 활성을 가지고 있는 것으로 알려져 있다. 본 연구에서는 in vitro 모델에서 quercetin의 항염증 활성과 작용기전을 연구하였다. Quercetin은 LPS로 자극된 RAW264.7에서 세포 생존율에 영향 없이 NO 생산을 농도 의존적으로 저해하였고, iNOS와 COX-2 단백질의 발현을 억제하였다. 게다가, quercetin은 LPS로 유도된 p38, JNK, ERK의 인산화를 농도 의존적으로 저해하였고, NF-κB p65 단백질과 억제자인 IκBα 단백질의 인산화를 저해하였다. 이러한 결과는 quercetin의 항염증 활성이 MAPK 경로와 NF-κB를 조절함으로써 이루어진다는 것을 시사한다. Quercetin에 의해 4종류의 친 염증성 cytokine (CSF2, IL-1β, IL-6, TNF-α)의 발현 변화를 정량적 real-time PCR 방법으로 확인한 결과, 모든 cytokine 유전자의 발현이 감소됨을 확인하였다. 종합적으로, 본 연구결과는 플라보노이드 quercetin이 RAW264.7 세포에서 LPS로 유도된 염증반응을 MAPK 경로와 NF-κB경로를 통해 억제하고 친염증성 cytokine 유전자의 발현을 억제함으 로써 조절한다는 것을 제시한다.

Sodium butyrate inhibits high glucose-induced inflammation by controlling the acetylation of NF-κB p65 in human monocytes

  • Ha-Rin Moon;Jung-Mi Yun
    • Nutrition Research and Practice
    • /
    • 제17권1호
    • /
    • pp.164-173
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Hyperglycemia is a major cause of diabetes and diabetesrelated diseases. Sodium butyrate (NaB) is a short-chain fatty acid derivative that produces dietary fiber by anaerobic bacterial fermentation in the large intestine and occurs in foods, such as Parmesan cheese and butter. Butyrate has been shown to prevent obesity, improve insulin sensitivity, and ameliorate dyslipidemia in diet-induced obese mice. Therefore, this study examined the effects and mechanism of NaB on the secretion of inflammatory cytokines induced by high glucose (HG) in THP-1 cells. MATERIALS/METHODS: THP-1 cells were used as an in vitro model for HG-induced inflammation. The cells were cultured under normal glycemic or hyperglycemic conditions with or without NaB (0-25 μM). Western blotting and quantitative polymerase chain reaction were used to evaluate the protein and mRNA levels of nuclear factor-κB (NF-κB), interleukin-6, tumor necrosis factor-α, acetylated p65, acetyl CREB-binding protein/p300 (CBP/p300), and p300 using THP-1 cells. Histone acetyltransferase (HAT), histone deacetylase (HDAC), and pro-inflammatory cytokine secretion activity were analyzed using an enzyme-linked immunosorbent assay. RESULTS: HG significantly upregulated histone acetylation, acetylation levels of p300, NF-κB activation, and inflammatory cytokine release in THP-1 cells. Conversely, the NaB treatment reduced cytokine release and NF-κB activation in HG-treated cells. It also significantly reduced p65 acetylation, CBP/p300 HAT activity, and CBP/p300 gene expression. In addition, NaB decreased the interaction of p300 in acetylated NF-κB and TNF-α. CONCLUSIONS: These results suggest that NaB suppresses HG-induced inflammatory cytokine production through HAT/HDAC regulation in monocytes. NaB has the potential for preventing and treating diabetes and its related complications.

Croton hirtus L'Hér Extract Prevents Inflammation in RAW264.7 Macrophages Via Inhibition of NF-κB Signaling Pathway

  • Kim, Min Jeong;Kim, Ju Gyeong;Sydara, Kong Many;Lee, Sang Woo;Jung, Sung Keun
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권4호
    • /
    • pp.490-496
    • /
    • 2020
  • Consumption of anti-inflammatory nutraceuticals may help treat or prevent inflammation-related illnesses such as diabetes, cardiovascular disease, and cancer. This study evaluated the effect of Croton hirtus L'Hér extract (CHE) on lipopolysaccharide (LPS)-induced nitric oxide (NO) production and nuclear factor kappa-B (NF-κB) signaling cascades. CHE significantly suppressed LPS-induced NO production and inducible nitric oxide synthase (iNOS) expression in RAW264.7 macrophages, although cyclooxygenase (COX)-2 expression was not affected. CHE also suppressed LPS-induced IκB kinase (IKK), IκB, and p65 phosphorylation in RAW264.7 cells. Western blot and immunofluorescence assays of cytosol and nuclear p65 and the catalytic subunit of NF-κB showed that CHE suppressed LPS-induced p65 translocation from the cytosol to the nucleus. CHE also suppressed LPS-induced Interleukin (IL)-6 and tumor necrosis factor (TNF)-α production in RAW264.7 cells. These results suggest that CHE prevents NO-mediated inflammation by suppressing NF-κB and inflammatory cytokines.

H2O2 처리된 LLC-PK₁세포에서 Redox Status 및 NF-κB Signaling에 대한 하고초(夏枯草)의 효과 (Effects of Prunellae Herba on the H2O2-Treated LLC-PK Cell's Redox Status and NF-κB Signaling)

  • 손종석;정지천
    • 동의생리병리학회지
    • /
    • 제30권4호
    • /
    • pp.242-249
    • /
    • 2016
  • This study was to investigate the anti-inflammatory effects of Prunellae Herba(PH). The generation of superoxide anion radical (․O2-), nitric oxide (NO), peroxynitrite (ONOO-) and Prostaglandin E₂(PGE2) were measured in the H2O2-Treated renal epithelial cells(LLC-PK1 cell) of mouse. And the effects of Prunellae Spica on the expression of NF-κB (p50, p65), IKK-α, phospho-IκB-α and inflammation-related proteins, COX-2, iNOS, IL-1β and VCAM-1, were examined by western blot. The fluorescent probes, 2',7'-dichlorodihydrofluorescein diacetate (DCFDA), 4,5-diaminofluorescein (DAF-2) and dihyldrorhodamine 123 (DHR 123) were used to estimate the scavenging effect of Prunellae Spica on ․O2-, NO, ONOO-. Western blot was conducted to assess the protein expression levels of NF-κB (p50, p65), IKK-α, phospho-IκB-α, inflammation-related proteins, COX-2, iNOS, IL-1β, VCAM-1. PH inhibited H2O2-treated cell death dose-dependently. It reduced the generation of ·O2-, NO, ONOO- and PGE₂ in the H2O2-treated renal epitheial cells(LLC-PK1 cell) of mouse in vitro. PH reduced the expression of NF-κB, IKK-α, phospho-IκB-α, COX-2, iNOS, IL-1β and VCAM-1 genes through means of decreasing activation of NF-κB signaling as well. According to these results, PH has an antioxidative activity and anti-inflammatory effect by regulating the NF-κB pathway. This suggest that PH is expected to be used to regulating inflammatory process and treating inflammation-related disease.

NF-κB와 MAPK억제를 통한 시호소간탕(柴胡疏肝湯)의 항염증효과 (Anti-inflammatory effect of Sihosogan-tang via inhibition of NF-κB and MAPK cascade)

  • 진효정;박상미;김예림;변성희;김상찬
    • 대한한의학방제학회지
    • /
    • 제31권2호
    • /
    • pp.99-109
    • /
    • 2023
  • Objectives : Sihosogan-tang (SST) is one of the traditional herbal formula and also one of the Korean medical insurance medicines. It commonly used in the treatment of hepatitis, chronic gastritis, intercostal neuralgia, pleurisy, and depression in East Asia. In the present study, we have demonstrated the anti-inflammatory effects of SST in macrophage cell line. Methods : To investigate mechanism of the anti-inflammatory effect of SST, we examined the productions of nitric oxide (NO) and pro-inflammatory cytokines, and the expressions of inducible NO synthase (iNOS), nuclear factor-κ B (NF-κB) and mitogen-activated protein kinase (MAPK) on RAW 264.7 cells activated by LPS. Results : SST significantly inhibited the expression of iNOS increased by LPS, and also significantly inhibited the production of NO. In addition, SST significantly inhibited pro-inflammatory cytokines such as TNF- α and interleukines. SST inhibited the expression of NF-κB and MAPK activation. Conclusions : These results suggest that SST ameliorates inflammatory response in LPS-activated RAW 264.7 cells through the inhibition of the NF-κB and MAPK pathway. Therefore, this study supplies objective evidence for the anti-inflammatory effect of SST.

RAW 264.7 세포에서 담배잎산말의 TLR4/MAPKs/NF-κB 신호전달체계 조절을 통한 항염증 효과 (Desmarestia tabacoides Ameliorates Lipopolysaccharide-induced Inflammatory Responses via Attenuated TLR4/MAPKs/NF-κB Signaling Cascade in RAW264.7 Cells)

  • 윤현서;안현;박충무
    • 생명과학회지
    • /
    • 제33권6호
    • /
    • pp.463-470
    • /
    • 2023
  • Desmarestia tabacoides Okamura는 전 세계적으로 널리 분포하는 갈조류 중 하나이다. 몇몇 산말류의 항종양, 멜라닌 생성 억제 및 광보호 활성에 대한 연구는 있었으나 D. tabacoides Okamura의 항염증 기전에 대해서는 보고되지 않아 본 연구에서는 LPS (lipopolysaccharide)로 자극된 RAW 264.7 세포에서 D. tabacoides Okamura 에탄올 추출물(DTEE)의 항염증 기전을 inducible nitric oxide synthase (iNOS)와 cyclooxygenase (COX)-2의 발현 및 이들의 상위신호전달물질인 nuclear factor (NF)-κB, mitogen-activated protein kinase (MAPK) 그리고 phosphoinositide-3-kinase (PI3K)/Akt의 인산화 조절 정도를 통해 분석하였다. DTEE의 처리는 세포 독성 없이 LPS로 유도된 NO와 prostaglandin (PG) E2의 생성과 이들의 생성 효소인 iNOS 및 COX-2의 발현을 유의하게 억제하였다. 그리고 LPS에 의해 활성화된 NF-κB 및 상위 신호 전달 물질인 extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK) 및 p38은 DTEE 처리에 의해 유의적으로 억제되었다. DTEE의 처리는 RAW 264.7 세포에서 LPS에 의해 활성화되는 adaptor molecule인 Toll-like receptor (TLR) 4 및 myeloid differentiation primary response (MyD) 88 또한 유의적으로 억제하였다. 이 결과를 통해 DTEE는 LPS에 의해 유도된 TLR4와 NF-κB 및 MAPK의 활성을 억제함으로써 염증 매개인자의 발현을 조절하였고, 이는 DTEE가 염증을 완화할 수 있는 기능성 식품의 소재로써 유용하게 사용될 수 있음을 시사한다.

Immunomodulatory effects of fermented Platycodon grandiflorum extract through NF-κB signaling in RAW 264.7 cells

  • Park, Eun-Jung;Lee, Hae-Jeung
    • Nutrition Research and Practice
    • /
    • 제14권5호
    • /
    • pp.453-462
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Platycodon grandiflorum (PG), an oriental herbal medicine, has been known to improve liver function, and has both anti-inflammatory and antimicrobial properties. However, little is known about the immune-enhancing effects of PG and its mechanism. In this study, we aimed to investigate whether fermented PG extract (FPGE), which has increased platycodin D content, activates the immune response in a murine macrophage cell line, RAW 264.7. MATERIALS/METHODS: Cell viability was determined by Cell Counting Kit-8 assay and the nitric oxide (NO) levels were measured using Griess reagent. Cytokine messenger RNA levels of were monitored by quantitative reverse transcription polymerase chain reaction. To investigate the molecular mechanisms underlying immunomodulatory actions of FPGE in RAW 264.7 cells, we have conducted luciferase reporter gene assay and western blotting. RESULTS: We found that FPGE treatment induced macrophage cell proliferation in a dose-dependent manner. FPGE also modulated the expression of NO and pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. The activation and phosphorylation levels of nuclear factor kappa B (NF-κB) were increased by FPGE treatment. Moreover, 5-aminoimidazole-4-carboxamide ribonucleotide, an activator of AMP-activated kinase (AMPK), significantly reduced both lipopolysaccharides- and FPGE-induced NF-κB reporter gene activity. CONCLUSIONS: Taken together, our findings suggest that FPGE may be a novel immune-enhancing agent acting via AMPK-NF-κB signaling pathway.

Suppressing NF-κB/Caspase-1 Activation is a Mechanism Involved in the Anti-inflammatory Effect of Rubi Fructus in Stimulated HMC-1 Cells

  • Mi-Ok Yang;Noh-Yil Myung
    • 대한의생명과학회지
    • /
    • 제29권3호
    • /
    • pp.137-143
    • /
    • 2023
  • Inflammation plays an important role in immune system's response to tissue injury and biological stimuli. However, excessive inflammation can cause tissue damage. Therefore, the development of naturally derived anti-inflammatory agents have received broad attention. In this study, we investigated the anti-inflammatory mechanism of Rubi Fructus (RF) extract on the mast cell-mediated inflammatory response. To determine the regulatory mechanism of RF in inflammatory reaction, we evaluated the effects of RF on secretion of interleukin (IL)-8, IL-6 and tumor necrosis factor (TNF)-α and activation of nuclear factor-κB (NF-κB) and caspase-1 in activated human mast cells-1 (HMC-1). The results showed that RF attenuated IL-8, IL-6 and TNF-α secretion in a concentration-dependent manner. Moreover, RF significantly attenuated caspase-1and NF-κB activation in activated HMC-1. Conclusively, the present results provide evidence that RF may be a promising agent for anti-inflammatory therapy.

NF-κB 저해를 통한 브로콜리 잎 추출물의 PGE2 저해효과 (Inhibitory effect of broccoli leaf extract on PGE2 production by NF-κB inhibition)

  • 박숙자;안이슬;노규표;유병혁;이종록
    • 대한본초학회지
    • /
    • 제34권6호
    • /
    • pp.117-124
    • /
    • 2019
  • Objective : Broccoli is edible green plant that has a wide variety of health benefits including cancer prevention and cholesterol reduction. However, leaves of broccoli are not eaten and are mostly left as waste. This study was conducted to evaluate the effects of the broccoli leaf extract (BLE) on prostaglandin E2 (PGE2) production related to nuclear factor kappa B (NF-κB) signaling in lipopolysaccharide (LPS)-activated macrophages. Methods : BLE was prepared by extracting dried leaf with ethanol. Cell viability was determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. PGE2 and inflammatory cytokines were detected by enzyme-linked immunosorbent assay (ELISA). Expression level of each protein was monitored by Western blot analysis. Results : In LPS-activated Raw264.7 cells, PGE2 release into culture medium was dramatically enhanced compared to control cells. However, increased PGE2 was attenuated dose-dependently by treatment with BLE. Inhibition of PGE2 production by BLE was due to the suppression of cyclooxygenase-2 (COX-2) expression determined by Western blot analysis. BLE also inhibited the production of inflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α). Inhibition at PGE2 and cytokine was mediated from inhibition of nuclear translocation of NF-κB due to the repression of inhibitory kappa B alpha (IκBα) phosphorylation and degradation. Conclusion : This study showed that BLE exerted inhibitory activities against PGE2, which is critical for the initiation and resolution of inflammatory responses, and that inhibition of PGE2 was mediated by suppression of NF-κB signaling. These results suggest that the waste broccoli leaves could be used for controlling inflammation.

흰점박이꽃무지 유충 추출물의 RAW264.7 세포 활성화에서 TLR4-JNK/NF-κB 신호전달 경로의 관여 (Involvement of TLR4-JNK/NF-κB signaling pathway in RAW264.7 cell activation of Protaetia brevitarsis seulensis larvae extracts)

  • 박주휘;채종범;이준하;한동엽;남주옥
    • Journal of Applied Biological Chemistry
    • /
    • 제66권
    • /
    • pp.447-454
    • /
    • 2023
  • 인간이 살아가는 환경에는 인체에 침입하여 건강한 삶을 영위하는 것을 방해하는 다양한 항원들이 존재하며, 면역 체계는 복잡한 기전을 통하여 이를 인식하고 제거한다. 대식세포는 선천 면역체계에 관연하는 면역세포로 체내 널리 분포하고 있으며, inducible nitric oxide synthase로 유도된 산화질소, cyclooxygenase-2로 유도된 prostaglandin E2 그리고 tumor necrosis factor-alpha 등의 전염증성 사이토카인 같은 다양한 면역 조절 물질을 생산한다. 흰점박이꽃무지유충은 미래 식량 수급 문제에 대한 대안으로 등장한 식용 곤충의 일종으로, 기존 mitogen activated protein kinases 및 nuclear factor-kappa B (NF-κB) 신호전달 경로를 경유하는 RAW264.7 대식세포의 활성화를 통한 면역 조절 효과가 보고되었다. 본 연구에서는 RAW264.7 세포에서 흰점박이꽃무지유충 추출물에 의해 유도된 면역 조절 물질의 발현이 toll-like receptor 4, mitogen activated protein kinases 및 nuclear factor-kappa B 신호전달 경로의 약리학적 억제제에 의해 어떻게 변화되었는지 확인하였다. 그 결과, 흰점박이꽃무지유충 처리에 의해 증가된 면역 조절 물질의 발현이 c-Jun N-terminal kinase (JNK) 억제제 및 NF-κB 억제제 처리에 의해 감소하는 것을 확인하였다. 또한, toll-like receptor 4(TLR4) 억제제 처리에 의해서는 흰점박이꽃무지유충 추출물 처리에 의해 증가된 면역 조절 물질의 발현과 JNK 및 NF-κB의 인산화 감소를 확인하였다. 우리의 이러한 연구는 흰점박이꽃무지유충이 TLR4-JNK/NF-κB 신호전달의 관여에 의해 RAW264.7 세포를 활성화하는 것을 시사한다.