• Title/Summary/Keyword: NF-${{\kappa}B$

Search Result 1,691, Processing Time 0.03 seconds

The Anti-Inflammatory Effects of Persicaria thunbergii Extracts on Lipopolysaccharide-Stimulated RAW264.7 Cells (Lipopolysaccharide로 처리 된 RAW264.7 세포에서 고마리 추출물의 항염증 효과)

  • Kim, Sang-Bo;Seong, Yeong-Ae;Jang, Hee-Jae;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.21 no.12
    • /
    • pp.1689-1697
    • /
    • 2011
  • In this study, we investigated the anti-inflammation effect of Persicaria thunbergii (P. thunbergii) on RAW 264.7 murine macrophage cells. The anti-inflammatory activity of P. thunbergii was determined by measuring expression of the LPS-induced inflammatory proteins, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and nuclear factor-${\kappa}B$ (NF-${\kappa}B$), and the production of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$). Methanol extract of P. thunbergii decreased the expression of iNOS, COX-2 and NF-${\kappa}B$, and increased the expression of HO-1 in LPS-stimulated RAW264.7 cells. Methanol extract was fractioned by n-butanol, hexane and ethyl acetate (EtOAc) and each fraction was tested for inhibitory effects on inflammation. Among the sequential solvent fractions, the EtOAc soluble fraction was investigated by the expression of prostaglandin $E_2$ ($PGE_2$), and showed decreasing form to the dose-dependent manner. EtOAc extract showed the most effective inhibitory activity of the expression of iNOS, COX-2 and NF-${\kappa}B$, and the production of NO. The study showed that P. thunbergii has anti-inflammatory activity through the decrease of NO and inhibition of iNOS, COX-2, $PGE_2$ and NF-${\kappa}B$ expression, and by the increase of HO-1 enzyme. This study needs for more investigation to find out the most effective single compound with anti-inflammatory activity.

Resveratrol Inhibits Nitric Oxide-Induced Apoptosis via the NF-Kappa B Pathway in Rabbit Articular Chondrocytes

  • Eo, Seong-Hui;Cho, Hongsik;Kim, Song-Ja
    • Biomolecules & Therapeutics
    • /
    • v.21 no.5
    • /
    • pp.364-370
    • /
    • 2013
  • Resveratrol (trans-3,4'-trihydroxystillbene), a naturally occurring polyphenolic antioxidant found in grapes and red wine, elicits diverse biochemical responses and demonstrates anti-aging, anti-inflammatory, and anti-proliferative effects in several cell types. Previously, resveratrol was shown to regulate differentiation and inflammation in rabbit articular chondrocytes, while the direct production of nitric oxide (NO) in these cells by treatment with the NO donor sodium nitroprusside (SNP) led to apoptosis. In this study, the effect of resveratrol on NO-induced apoptosis in rabbit articular chondrocytes was investigated. Resveratrol dramatically reduced NO-induced apoptosis in chondrocytes, as determined by phase-contrast microscopy, the MTT assay, FACS analysis, and DAPI staining. Treatment with resveratrol inhibited the SNP-induced expression of p53 and p21 and reduced the expression of procaspase-3 in chondrocytes, as detected by western blot analysis. SNP-induced degradation of I-kappa B alpha ($I{\kappa}B-{\alpha}$) was rescued by resveratrol treatment, and the SN50 peptide-mediated inhibition of NF-kappa B (NF-${\kappa}B$) activity potently blocked SNP-induced caspase-3 activation and apoptosis. Our results suggest that resveratrol inhibits NO-induced apoptosis through the NF-${\kappa}B$ pathway in articular chondrocytes.

Cadmium but not Mercury Suppresses NF-$\kappa$B Activation and COX-2 Expression Induced by Toll-like Receptor 2 and 4 Agonists

  • Ahn, Sang-Il;Park, Seul-Ki;Lee, Mi-Young;Youn, Hyung-Sun
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.2
    • /
    • pp.141-146
    • /
    • 2009
  • Toll-like receptors (TLRs) induce innate immune responses by recognizing conserved microbial structural molecules. All TLR signaling pathways culminate in the activation of nuclear factor kappa-B (NF-$\kappa$B) leading to the induction of inflammatory gene products such as cyclooxygenase-2 (COX-2). Deregulated activation of TLRs can lead to the development of severe systemic inflammation. Divalent heavy metals, cadmium and mercury, have been used for thousands of years. While cadmium and mercury are clearly toxic to most mammalian organ systems, especially the immune system, their underlying toxic mechanism(s) remain unclear. Here, we report biochemical evidence that cadmium, but not mercury, inhibits NF-$\kappa$B activation and COX-2 expression induced by TLR2 or TLR4 agonists, while cadmium does not inhibit NF-$\kappa$B activation induced by the downstream signaling component of TLRs, MyD88. Thus, the target of cadmium to inhibit NF-$\kappa$B activation may be upstream of MyD88 including TLRs themselves, or events leading to TLR activation by agonists.

Trans-10, cis-12 Conjugated Linoleic Acid Modulates Tumor Necrosis Factor-${\alpha}$ Production and Nuclear Factor-${\kappa}B$ Activation in RAW 264.7 Macrophages Through Formation of Reactive Oxygen Species (RAW 264.7 세포에 있어 t10c12-CLA의 ROS를 통한 TNF-${\alpha}$ 생산 및 NF-${\kappa}B$ 활성 조절)

  • Park, So-Young;Kang, Byeong-Teck;Kang, Ji-Houn;Yang, Mhan-Pyo
    • Journal of Veterinary Clinics
    • /
    • v.31 no.6
    • /
    • pp.469-476
    • /
    • 2014
  • The aims of this study were to explore the effects of conjugated linoleic acid (CLA) on reactive oxygen species (ROS) production in lipopolysaccharide (LPS)-naïve and LPS-stimulated RAW 264.7 macrophages and to examine whether these effects affect the regulation of tumor necrosis factor-alpha (TNF-${\alpha}$) production, and nuclear factor-kappa B (NF-${\kappa}B$) and peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) activation. Trans-10, cis-12(t10c12)-CLA increased the production of ROS, as well as TNF-${\alpha}$ in LPS-naïve RAW 264.7 cells. The CLA-induced TNF-${\alpha}$ production was suppressed by treatment of diphenyleneiodonium chloride (DPI), a NADPH oxidase inhibitor. In addition, CLA enhanced the activities of NF-${\kappa}B$ and $PPAR{\gamma}$ in LPS-naïve RAW 264.7 cells, and this effect was abolished with DPI treatment. LPS treatment increased ROS production, whereas CLA reduced LPS-induced ROS production. LPS increased both TNF-${\alpha}$ production and NF-${\kappa}B$ activity, whereas t10c12-CLA reduced TNF-${\alpha}$ production and NF-${\kappa}B$ activity in LPS-stimulated RAW 264.7 cells. DPI treatment suppressed LPS-induced ROS production and NF-${\kappa}B$ activity. Moreover, DPI enhanced the inhibitory effects of t10c12-CLA on TNF-${\alpha}$ production and NF-${\kappa}B$ activation in LPS-stimulated RAW 264.7 cells. However, neither t10c12-CLA nor DPI affected $PPAR{\gamma}$ activity in LPS-stimulated RAW 264.7 cells. Taken together, these data indicate that t10c12-CLA induces TNF-${\alpha}$ production by increasing ROS production in LPS-naïve RAW 264.7 cells, which is mediated by the enhancement of NF-${\kappa}B$ activity via $PPAR{\gamma}$ activation. By contrast, t10c12-CLA suppresses TNF-${\alpha}$ production by inhibiting ROS production and NF-${\kappa}B$ activation via a $PPAR{\gamma}$-independent pathway in LPS-stimulated RAW 264.7 cells. These results suggest that t10c12-CLA can modulate TNF-${\alpha}$ production and NF-${\kappa}B$ activation through formation of ROS in RAW 264.7 macrophages.

p38 MAPK and $NF-_{\kappa}B$ are Required for LPS-Induced RANTES Production in Immortalized Murine Microglia (BV-2)

  • Jang, Sae-Byeol;Lee, Kweon-Haeng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.5
    • /
    • pp.339-346
    • /
    • 2000
  • Using murine immortalized microglial cells (BV-2), we examined the regulation of RANTES production stimulated by lipopolysaccharide (LPS), focusing on the role of mitogen-activated protein kinase (MAPK) and nuclear factor $(NF)-{\kappa}B.$ The result showed that RANTES (regulated upon activation of normal T cell expressed and secreted) was induced at the mRNA and protein levels in a dose- and time-dependent manner in response to LPS. From investigations of second messenger pathways involved in regulating the secretion of RANTES, we found that LPS induced phosphorylation of extracellular signal-regulated kinase (Erk), p38 MAPK and c-Jun-N-terminal kinase (JNK), and activated $(NF)-{\kappa}B.$ To determine whether this MAPK phosphorylation is involved in LPS-stimulated RANTES production, we used specific inhibitors for p38 MAPK and Erk, SB 203580 and PD 98059, respectively. LPS-induced RANTES production was reduced approximately 80% at $25\;{\mu}M$ of SB 203580 treatment. But PD 98059 did not affect RANTES production. Pyrrolidine-dithiocarbamate (PDTC), $(NF)-{\kappa}B$ inhibitor, reduced RANTES secretion. These results suggest that LPS-induced RANTES production in microglial cells (BV-2) is mainly mediated by the coordination of p38 MAPK and $(NF)-{\kappa}B$ cascade.

  • PDF

Melittin Inhibits Human Prostate Cancer Cell Growth through Induction of Apoptotic Cell Death

  • Park Hye-Ji;Lee Yong-Kyung;Song Ho-Seub;Kim Goon-Joung;Son Dong-Ju;Lee Jae-Woong;Hong Jin-Tae
    • Toxicological Research
    • /
    • v.22 no.1
    • /
    • pp.31-37
    • /
    • 2006
  • It was previously found that melittin inhibited $NF-{\kappa}B$ activity by reacting with signal molecules of $NF-{\kappa}B$ which is critical contributor in cancer cell growth by induction of apoptotic cell death. We here investigated whether melittin inhibits cell growth of human prostate cancer cells through induction of apoptotic cell death, and the possible signal pathways. Melittin ($0{\sim}1\;{\mu}g/ml$) inhibited prostate cancer cell growth in a dose dependent manner. Conversely related to the growth inhibitory effect, melittin increased the induction of apoptotic cell death in a dose dependent manner. Melittin also inhibited DNA binding activity of $NF-{\kappa}B$, an anti-apoptotic transcriptional factor. Consistent with the induction of apoptotic cell death and inhibition of $NF-{\kappa}B$, melittin increased the expression of pro-apoptotic proteins caspase-3, and Bax but down-regulated anti-apoptotic protein Bcl-2. These findings suggest that melittin could inhibit prostate cancer cell growth, and this effect may be related with the induction of apoptotic cell death via inactivation of $NF-{\kappa}B$.

Anti-Inflammatory Effects of Ethyl Acetate Fraction from Cnidium officinale Makino on LPS-Stimulated RAW 264.7 and THP-1 Cells

  • Jeong, Jin-Boo;Hong, Se-Chul;Jeong, Hyung-Jin;Koo, Jin-Suk
    • Korean Journal of Plant Resources
    • /
    • v.25 no.3
    • /
    • pp.299-307
    • /
    • 2012
  • This work aimed to elucidate the anti-inflammatory effects of ethyl acetate fraction from Cnidium officinale Makino with a cellular system of LPS-stimulated RAW 264.7 and THP-1 cells. Some key pro-inflammatory cytokines and mediators including NO, iNOS, $PGE_2$, COX-2, TNF-${\alpha}$, NF-${\kappa}B$ p50 and NF-${\kappa}B$ p65 were studied by sandwich ELISA and western blot analysis. Ethyl acetate fraction could significantly inhibit the production of NO, $PGE_2$, TNF-${\alpha}$, iNOS and COX-2 in LPS-stimulated cell than that of single LPS-stimulated. And ethyl acetate fraction suppresses the activation of NF-${\kappa}B$ p50 and NF-${\kappa}B$ p65. All the results showed that ethyl acetate fraction had a good anti-inflammatory effect on LPS-stimulated RAW264.7 and THP-1 cells. Taken together, the anti-inflammatory actions of ethyl acetate fraction from Cnidium officinale Makino might be due to the down-regulation of NO, $PGE_2$, TNF-${\alpha}$, iNOS and COX-2 via the suppression of NF-${\kappa}B$ activation.

Anti-inflammatory activities of Scolopendra subspinipes mutilans in RAW 264.7 cells (RAW 264.7 세포에서 왕지네 추출물의 항염 활성)

  • Park, Jae Hyeon;Lee, Sun Ryung
    • Journal of Nutrition and Health
    • /
    • v.51 no.4
    • /
    • pp.323-329
    • /
    • 2018
  • Purpose: The dried body of Scolopendra subspinipes mutilans has long been used as a traditional Korean medicinal food, but little is known about its mechanisms of action. In this study, we investigated the anti-inflammatory activities of Scolopendra subspinipes mutilans and possible mechanisms in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Methods: Cytotoxicity of Scolopendra subspinipes mutilans extract (SSME) was measured by MTT assay, anti-inflammatory activities were analyzed by nitric oxide (NO) production, the expression of inducible NO synthase (iNOS) and the mRNA level of pro-inflammatory cytokines such as $interleukin-1{\beta}$ ($IL-1{\beta}$) and interleukin-6 (IL-6). Nuclear translocation of nuclear factor-kappa B ($NF-{\kappa}B$) p65 subunit and degradation of inhibitory kappa B ($I{\kappa}B$) were examined by western blot. Results: SSME inhibited LPS-induced NO production and iNOS expression without cytotoxicity. Up-regulation of LPS-induced pro-inflammatory cytokines, $IL-1{\beta}$ and IL-6 was dose dependently attenuated by SSME. Exposure of pyrrolidine dithiocarbamate, an $NF-{\kappa}B$ specific inhibitor, accelerated the inhibitory effects of SSME on NO production and iNOS expression in LPS-stimulated cells. Moreover, translocation of $NF-{\kappa}B$ from the cytosol to the nucleus and degradation of $I{\kappa}B$ were decreased by treatment with SSME in LPS-induced cells. Conclusion: These results suggest that the SSME might have the inhibitory effects on inflammation, partly through inhibition of the $NF-{\kappa}B$ signaling pathway.

Role of Insulin in the Activation of $NF-{\kappa}B/I{\kappa}B$ Pathway in Macrophage Cells (대식세포주에서 인슐린이 $I{\kappa}B/NF-{\kappa}B$ 경로 활성화에 미치는 영향)

  • Lee, Sang-Min;Jang, Yeon-Sil;Lee, Choon-Taek;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Yoo, Chul-Gyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.68 no.3
    • /
    • pp.168-174
    • /
    • 2010
  • Background: Sepsis still has a high mortality rate despite adequate supportive care. Newer therapeutic modalities have been developed but they have generally ended in failure. Recently, insulin was reported to have an anti-inflammatory effect by inhibiting the $I{\kappa}B/NF-{\kappa}B$ pathway, and may have therapeutic potential in sepsis. However, the precise mechanism of the anti-inflammatory effect of insulin is unclear. This study examined the role of insulin in activating $I{\kappa}B/NF-{\kappa}B$ in macrophage. Methods: Raw 264.7 cells, a murine macrophage cell line, were used in this experiment. Western blotting using $I{\kappa}B$ Ab and phosphor-specific $I{\kappa}B$ Ab was performed to evaluate the degradation and phosphorylation of $I{\kappa}B$ cells. For the $I{\kappa}B$ Kinase (IKK) activity, an immune complex kinase assay was performed. The level of interleukin-6 (IL-6) was measured by ELISA to determine the level of proinflammatory cytokine. Results: $I{\kappa}B{\alpha}$ degradation began 30 min after lipopolysaccharide (LPS) treatment. However, an insulin pretreatment suppressed the $I{\kappa}B{\alpha}$ degradation caused by the LPS treatment. The phosphorylation of $I{\kappa}B{\alpha}$ and IKK activity was also inhibited by the insulin pretreatment. Finally, the insulin pretreatment showed a tendency to suppress the induction of IL-6 by LPS. Conclusion: Insulin might have an anti-inflammatory effect though partial inhibition of the $I{\kappa}B/NF{\kappa}B$ pathway in macrophage cell lines.

Salicylate Regulates Cyclooxygenase-2 Expression through ERK and Subsequent $NF-_kB$ Activation in Osteoblasts

  • Chae, Han-Jung;Lee, Jun-Ki;Byun, Joung-Ouk;Chae, Soo-Wan;Kim, Hyung-Ryong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.4
    • /
    • pp.239-246
    • /
    • 2003
  • The expression of cyclooxygenase-2 (COX-2) is a characteristic response to inflammation and can be inhibited with sodium salicylate. $TNF-{\alpha}$ plus $IFN-{\gamma}$ can induce extracellular signal-regulated kinase (ERK), IKK, $I{\kappa}B$ degradation and NF-${\kappa}B$ activation. The inhibition of the ERK pathway with selective inhibitor, PD098059, blocked cytokine-induced COX-2 expression and $PGE_2$ release. Salicylate treatment inhibited COX-2 expression induced by $TNF-{\alpha}$/$IFN-{\gamma}$ and regulated the activation of ERK, IKK and $I{\kappa}B$ degradation and subsequent NF-${\kappa}B$ activation in MC3T3E1 osteoblasts. Furthermore, antioxidants such as catalase, N-acetyl-cysteine or reduced glutathione attenuated COX-2 expression in combined cytokines-treated cells, and also inhibited the activation of ERK, IKK and NF-${\kappa}B$ in MC3T3E1 osteoblasts. In addition, $TNF-{\alpha}$/$IFN-{\gamma}$ stimulated ROS release in the osteoblasts. However, salicylate had no obvious effect on ROS release in DCFDA assay. The results showed that salicylate inhibited the activation of ERK and IKK, $I{\kappa}B$ degradation and NF-${\kappa}B$ activation independent of ROS release and suggested that salicylate exerts its anti-inflammatory action in part through inhibition of ERK, IKK, $I{\kappa}B$, $NF-{\kappa}B$ and resultant COX-2 expression pathway.