Korean J  Physiol Pharmacol
Vol 4: 339—346, October, 2000

p38 MAPK and NF- ¢B are Required for LPS-Induced RANTES
Production in Immortalized Murine Microglia (BV-2)
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Using murine immortalized microglial cells (BV-2), we examined the regulation of RANTES production
stimulated by lipopolysaccharide (LPS), focusing on the role of mitogen-activated protein kinase (MAPK)
and nuclear factor (NF)- ¢ B. The result showed that RANTES (regulated upon activation of normal T cell
expressed and secreted) was induced at the mRNA and protein levels in a dose- and time-dependent manner
in response to LPS. From investigations of second messenger pathways involved in regulating the secretion
of RANTES, we found that LPS induced phosphorylation of extracellular signal-regulated kinase (Erk),
p38 MAPK and c-Jun-N-terminal kinase (JNK), and activated NF- ¢B. To determine whether this MAPK
phosphorylation is involved in LPS-stimulated RANTES production, we used specific inhibitors for p38
MAPK and Erk, SB 203580 and PD 98059, respectively. LPS-induced RANTES production was reduced
approximately 80% at 25 uM of SB 203580 treatment. But PD 98059 did not affect RANTES production.
Pyrrolidine-dithiocarbamate (PDTC), NF- B inhibitor, reduced RANTES secretion. These results suggest
that LPS-induced RANTES production in microglial cells (BV-2) is mainly mediated by the coordination

of p38 MAPK and NF- 4B cascade.
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INTRODUCTION

Microglia is a macrophage-like cell in the CNS. In
response to trauma, immune-mediated events and
infections within the CNS, microglial cells become
activated and the activated microglia enhances phago-
cytosis and produces several substances involved in
inflammation. One of these substances is chemokine.
Chemokine is a secreted protein that function as a
chemoattractant mediating the recruitment of specific
subsets of leukocytes to sites of tissue damage and
immunological reactions. In the CNS, chemokines
were found to be involved in the pathogenesis of
many important neuroinflammatory diseases such as
multiple sclerosis, stroke and HIV encephalopathy
McGeer & McGeer, 1995; Asensio et al, 1999).

Recent studies have demonstrated that activated
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microglial cells produce both «@- and S-chemokines
including RANTES, a member of the A-chemokine
family (Hayashi et al, 1995; Peterson et al, 1997;
Hausmann et al, 1998; Hua & Lee, 2000). RANTES
has been proposed to play a role in recruiting im-
munocytes from the periphery into the CNS due to
its potent chemoattractant properties (Schall et al,
1988; Schall et al, 1990; Bell et al, 1996; Howard et
al, 1996).

Recently, several MAPK signaling pathways have
been demonstrated to play a central role in mediating
intracellular signal transduction from the cell surface
to the nucleus. Many extracellular stimuli elicit spe-
cific biological responses through activation of
MAPK cascades (Davis, 1994). At least three MAPK
subfamilies are present in mammalian cells and form
distinct signaling cascades. These include Erk, p38
MAPK and JNK. p38 MAPK is activated in response
to stress signals, including hyperosmotic shock, heat
shock, cold shock, UV irradiation and inflammatory
cytokines, and play an important role in apoptosis and
cytokine expression (Han et al, 1994; Rouse et al,
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1994; Raingeaud et al, 1995; Pandey et al, 1996).
Whereas Erk is activated by mitogenic stimuli, and
plays a central role in cell proliferation and dif-
ferentiation (Cowley et al, 1994; Force & Bonventre,
1998). However, recent studies have shown that Erk
and JNK also play important roles in signal cascades
of induction of various inflammatory mediators in-
cluding cytokines and chemical mediators (Bhat et al,
1998; Rawadi et al, 1998).

The transcriptional activator, NF- ¢B is also a key
component controlling the synthesis of cytokines and
many other immunoregulatory gene products (Bae-
uetle & Henkel, 1994; Schulze-Osthoff et al, 1995).
It is triggered by a great variety of proinflammatory
or pathogenic stimuli including inflammatory cyto-
kines, phorbol ester and LPS, as well as ionizing and
UV irradiation (Wulczyn et al, 1996; Li & Karin,
1998; Djavaheri-Mergny et al, 1999; Manna et al,
1999). NF- B is a dimer consisting of two . Rel
family proteins (pS0 and p65) that is activated in the
cytoplasm as a result of the phosphorylation and
consequent degradation of 1xB-¢a. The subsequent
translocation of NF- B to the nucleus results in the
activation of target genes (Henkel et al, 1993;
Bacuerle & Baltimore, 1996).

Recent studies have shown that MAPK and NF- xB
are involved in the synthesis of cytokines in micro-
glial cells (Bhat et al, 1998; Pyo et al, 1998; Lee et
al, 2000). But, less is known about the signal cascade
in the LPS-induced RANTES production of micro-
glial cells. Therefore, in the present study we at-
tempted to examine the role of MAPK and NF-«B
in RANTES production in LPS-stimulated microglial
cells (BV-2). BV-2 cell line used in this study was
established by immortalization of mouse microglial
cells using infection with the J2 retrovirus (Blasi et
al, 1990) and confirmed that it has its own properties
of microglia (Bocchini et al, 1992; Wood et al, 1994).

METHODS

Materials

LPS, SB 203580 and PDTC were obtained from
Sigma (St. Louis, MO. USA). RANTES goat mono-
clonal antibody and RANTES were from R & D
systems (Minneapolis, MN). Antibodies of p38 MAPK,
phospho-p38 MAPK, Erk (p44/p42 MAPK), phospho-
Erk (p44/p42 MAPK), phospho-SAPK/INK and

PD98059 were from New England Biolabs (Beverly,
MA). I«B-¢a antibody and anti-goat IgG antibody
were from Santa Cruz Biotechnology. Oligo (dT)
12~18 primer, dNTP mixture and SuperScript II
RNase reverse transcriptase were from GIBCO-BRL
(Gaithersburg, MD). BV-2 cells were a generous gift
from Dr. Choi EJ (Korea University). All other che-
micals used were of the highest grade available.

Cell culture

The murine microglial cell line (BV-2) was cul-
tured in DMEM supplemented with 10% fetal bovine
serum, 1 mM sodium pyruvate, 45 mM sodium bicar-
bonate, 10 units/ml and 10 mg/ml of a mixture of
penicillin/streptomycin. The cells were seeded to 60
mm’ dishes in a density of 1.8X 10%well. After 24
h incubation, experiments were conducted.

Reverse transcription-polymerase chain reaction (RT-
PCR) analysis

Reverse transcription of 1 pg of RNA was per-
formed with Oligo (dT) 12~ 18 primer followed by
the addition of a reaction mixture containing 5 X first
strand buffer (250 mM Tris-HC1 (pH 8.3), 375 mM
KCl, 15 mM MgCl,, 0.1 M DTT), SuperScript II
RNase H-Reverse Transcriptase and 10 mM deoxy-
nucleoside triphosphates mix (10 mM each of dATP,
dGTP, dCTP and dTTP) in a final volume of 20 x1.
The mixture was incubated at 42°C for 1 h followed
by termination at 70°C for 15 min. Amplification of
RANTES or A-actin cDNA was performed with an
automatic thermocycler in a reaction mixture con-
taining 400 mM KCl, 10 mM Tris-HCI (pH 9.0), 1.5
mM MgCly, 250 M deoxynucleoside triphosphates
mixture, 1 U of Taq DNA polymerase, 10 pM primer
(sense and antisense), cDNA and H,O. Amplification
was set at 94°C for 30s, 60°C for 40s, and 72°C for
60s followed by a 6 min extension at 72°C. The
RANTES PCR product (205 bp) and [-actin (435
bp) were amplified for 28 cycles and 20 cycles,
respectively. Both PCR products were viewed under
UV light after 2% agarose gel electrophoresis and
staining in ethidium bromide. The RANTES primer
sets were 5°-CCC CAT ATT CCT CGG ACA CCA
CAC-3’ (sense) and 5°-TCC TAG CTC ATC TCC
AAA GAG TTG-3’ (antisense). The A-actin primer
sets were 5°-ATG GGT CAG AAG GAT TCC TAT
GTG-3’ (sense) and 5’-CTT CAT GAG GTA GTC
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AGT CAG GTC-3’ (antisense).
Western blot analysis

Western blot was performed for the analysis of p38
MAPK, Erk, INK phosphorylation and NF- «B acti-
vation. Microglial cells were treated with 100 ng/ml
LPS for 5 min to 3 h. Cells were washed with cold
phosphate-buffered saline and lysed with a lysis buf-
fer (150 mM NaCl, 50 mM Tris-HCI (pH 7.4), 0.25%
sodium deoxycholate, 1% NP-40, 1 mM NaF and 1
mM NaVOs;), including protease inhibitors (1 mM
PMSF, 1 ug/ml leu-peptin, pepstatin, aprotinine and
1 mM EDTA). Protein samples were separated by
12% SDS-PAGE and electrophoretically transferred
to membrane. The membrane was incubated with spe-
cific antibodies to phosphorylated threonine and tyro-
sine of p38 MAPK, Erk, JNK and I #B- ¢ antibody.
Next, it was incubated with the horseradish peroxi-
dase (HRP)-conjugated anti-rabbit antibody. Blots
were incubated with enhanced chemiluminescence
solution (LumiGLO) for 1 min and exposed on Hy-
perfilm ECL (Amersham LIFE SCIENCE).

Enzyme-linked immunosorbent assay (ELISA)

The secretion of RANTES in the culture superna-
tants was measured by an ELISA developed in our
laboratory. Briefly, 96-well culture plates were coated
with a standard series of diluted RANTES and super-
natant samples. The plates were stored overnight at
4°C. The following day, the plates were washed with
0.05% PBS/Tween-20 (PBST) and nonspecific bind-
ing was blocked by treatment with 5% BSA for 30
min at room temperature. After washing, goat anti-
RANTES antibody (1 : 1,000 in PBST) were added
and incubated for 2 h at room temperature. After
washing, anti-goat IgG horseradish peroxidase con-
jugate (1 : 1,000 in PBST) was added for 2 h at room
temperature. After extensive washing with PBST,
substrate was added for 30 min at room temperature
for color development. OD was read at 450 nm and
compared with standard values for quantification.

RESULTS
LPS-induced RANTES production

We investigated the RANTES production of micro-
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Fig, 1. Effects of LPS on RANTES expression in a time
dependent manner. Cells were treated with a constant
amount (100 ng/ml) of LPS at various times. (A)
RANTES in the supernatant was quantified by ELISA
technique. (B) Total RNA was then harvested from the
cells after using the supernatant as shown in (A) for
RT-PCR. f-actin primer was used as an internal control.
The RT-PCR products shown were amplified for 28
cycles in RANTES primer sets and 20 cycles in /S-actin
primer sets. DATA are presented as mean® SEM of three
experiments.

glial cells in terms of mRNA and secreted protein.
The RANTES production was increased in a time-
dependent manner following LPS (100 ng/ml) stimu-
lation, which was plateau at the time of 12 h (67.1+%
2.1 ng/ml; Fig. 1A). The expression of RANTES
mRNA was not detected in cells per se. It was
induced by LPS at 4 h and sustained to 16 h (Fig.
1B). The RANTES production was increased in a
dose-dependent manner. It was secreted at the con-
centration of 10 ng/ml LPS and reached the plateau
at 100 ng/ml (64.4+1.9 ng/ml; Fig. 2A). RT-PCR
product of RANTES was also detected in a dose
dependent manner (Fig. 2B).
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Fig. 2. Effects of LPS on RANTES expression of in a
dose-dependent manner. Cells were incubated with vari-
ous concentration of LPS for 12 h. (A) RANTES in the
supernatant was quantified by ELISA technique. (B)
Total RNA was then harvested from the cells after using
the supernatant as shown in (A) for RT-PCR. S-actin
primer was used as an internal control. The RT-PCR
products shown were amplified for 28 cycles in RANTES
primer sets and 20 cycles in A-actin primer sets. DATA
are presented as meanz SEM of three experiments.

LPS-induced p38 MAPK, Erk and JNK phosphory-
lation

To determine whether LPS could induce the
MAPK, cells were treated with LPS (100 ng/ml).
Samples were collected at different time points and
immunoblotted with antibodies for p38 MAPK phos-
phorylated at Thr180 and Tyr182, Erk phosphorylated
at Thr202 and Tyr204 or SAPK/JNK phosphorylated
at Thr183 and Tyr185. Phospho-p38 MAPK increased
at 10 min, reached to the plateau at 2 h (Fig. 3A,
upper panel). Phospho-Erk increased highly at 10 min
and it was sustained until 3 h (Fig. 3B, upper panel).
Phospho-INK was detected at 10 min, increased to 30
min and then diminished (Fig. 3C). S-actin was blot-
ted as an internal control (Fig. 4D).
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Fig. 3. LPS-induced threonine and tyrosine phosphory-
lation of p38 MAPK, Erk, and JNK. Cells were stimu-
lated with LPS (100 ng/ml). Samples were collected at
different time points and separated by 12% SDS-PAGE,
transferred to membranes, and blotted with specific anti-
bodies to phosphorylated threonine and tyrosine of p38
MAPK (upper panel of A), Erk (upper panel of B) and
JNK (panel of C). Lower panels of A and B show the
amounts of - p38 MAPK and Erk blotted. S-actin was
blotted as an internal control (panel D).
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Fig. 4. LPS-induced NF- ¢ B activation. Cells were stimu-
lated with LPS (100 ng/ml). Samples were collected at
different time points and separated by 12% SDS-PAGE,
transferred to membranes, and blotted with a specific
antibody to I kB- ¢ (panel A). S-actin was blotted as an
internal control (panel B).

LPS-induced NF- xB activation

To investigate whether LPS could induce NF- B
activation, we observed degradation of 1xB-a, an
inhibitor of the transcription factor NF- xB (Henkel
et al, 1993). Samples treated with LPS (100 ng/ml)
were collected at different time points and immuno-
blotted with antibody for 14B-@. The I xB-a was
decreased at 5 min, disappeared at 10 min, and then
returned to the basal levels at 30 min (Fig. 4A). S-
actin was blotted as an internal control (Fig. 4B).
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Inhibition of LPS-induced RANTES production by
MAPK inhibitors

To define the involvement of MAPK pathways in
LPS-induced RANTES production, we used two
specific inhibitors: PD 98059, Erk inhibitor (Dudley
et al, 1995) and SB 203580, p38 MAPK inhibitor
(Lee et al, 1994). Cells were preincubated for 1 h
with various concentrations of SB 203580 and PD
98059 followed by treatment with LPS (100 ng/ml)
for 12 h. The RANTES production was determined
in the cell supernatants and compared to the super-
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Fig. 5. Effect of p38 MAPK and Erkspecific inhibitors
on RANTES production. Cells were preincubated with
various concentrations of SB 203580 (A) and PD 98059
(B) for 1 h and then stimulated with LPS (100 ng/ml).
The concentration of RANTES in the culture supernatants
were measured at 12 h after cultivation by ELISA. DATA
are presented as mean* SEM of three experiments. *P <
0.05 vs. without SB 203580.

natant treated with only LPS and the solvent of
inhibitors (0.25% DMEM). As shown in Fig. 5A, p38
MAPK inhibitor significantly reduced the RANTES
production in a dose-dependent manner. No cell toxi-
city was observed when cells were treated with SB
203580 at the highest used concentration of 25 ¢M
(data not shown). The Erk inhibitor, PD 98059, did
not inhibit the LPS-mediated RANTES production
(Fig. 5B).

Inhibition of LPS-induced RANTES production by
NF- B inhibitor

To investigate the involvement of NF-xB acti-
vation in RANTES production induced by LPS, we
used the recently reported specific NF- ¢B inhibitor,
PDTC (Liu SF et al, 1999). Cells were preincubated
for 1 h with various concentrations of PDTC before
being challenged with LPS. RANTES production was
determined in cell supematants after 12 h of stimu-
lation. As shown in Fig. 6, PDTC inhibited the
RANTES production in a concentration-dependent
manner, which underscores the involvement of NF-
«B activation in RANTES production of microglial
cells in response to LPS. No cell toxicity was ob-
served with 100 M PDTC.
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Fig. 6. Effect of NF- ¢B specific inhibitor on RANTES
production. Cells were preincubated with various con-
centrations of PDTC for 1 h and then stimulated with
LPS (100 ng/ml). The concentration of RANTES in the
culture supernatants were measured at 12 h after culti-
vation by ELISA. DATA are presented as mean+ SEM
of three experiments. *P<0.05 vs. without PDTC.
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DISCUSSION

In the present study, we investigated the intra-
cellular signaling mechanisms of RANTES produc-
tion in microglial cells (BV-2). The results showed
that the well known microglial activator, LPS, in-
duced RANTES production as mentioned in other
studies in rat and human microglial cells (Peterson et
al, 1997; McManus et al, 1998; Hu et al, 1999; Hua
& Lee, 2000). Analysis of signal transduction path-
way regulating RANTES production showed that LPS
induced the phosphorylation of Erk, p38 MAPK and
JNK but RANTES production was suppressed by
only p38 MAPK inhibitor, SB 203580 (Fig. 3 & Fig.
5). In LPS-stimulated microgial cells, 25 M of SB
203580 caused approximately 80% inhibition of
RANTES production. In contrast to SB 203580, 25
#M of PD 98059 almost did not affect the inhibition
of RANTES production, which implies that p38
MAPK may be the main pathway to produce RANTES
in LPS-stimulated microglial cells.

Although we could not investigate the role of JNK
because the specific inhibitor was not available yet,
it might be one of the possible pathway in the re-
gulation of RANTES production because JNK was
also phosphorylated by LPS (Fig. 3C). Some reports
have already shown that the JNK pathway is involved
in cytokine expression (Pyo et al, 1998; Rawadi et al,
1998; Zhang et al, 1998). However, further study
utilizing a specific inhibitor for JNK is required to
determine the role of JNK in the regulation of
RANTES production.

Our findings in murine microglial cells where SB
203580 reduced the production of RANTES protein
are consistent with studies using other cell types and
stimuli, which show that p38 MAPK plays an
important role in RANTES production (Hashimoto et
al, 2000). In addition, a recent study demonstrated
that p38 MAPK is required for LPS-induced TNF- &
in human microglial cells (Lee et al, 2000). It was
reported that Erk and JNK pathways as well as p38
MAPK are involved in RANTES production in other
cell type or stimuli (Kujime et ai, 2000; Maruoka et
al, 2000), and LPS-induced TNF- ¢ production in rat
microglia (Bhat et al, 1998; Pyo et al, 1998). How-
ever, based on our result in Fig. 5B, the Erk pathway
did not induce RANTES production in microglial
cells.

We also showed the role of NF- ¢B activation in
LPS-induced RANTES production. In this study LPS

induced NF- ¢B activation in microglial cells (Fig. 4)
as other studies have shown (Bonaiuto et al, 1997;
Hartlage-Rubsamen et al, 1999; Heyen et al, 2000).
And 100 M of PDTC caused a nearly 64% inhi-
bition of RANTES production (Fig. 6). It has also
been shown that NF- ¢B potently up-regulates the
promoter activity of RANTES in human T cells and
bronchial epithelial cells (Manni et al, 1996; Moriuchi
et al, 1997). Moreover, Ehrlich et al (1998) reported
that NF- ¢B is involved in cytokine expression in
microglial cells. In this result, the inhibition of NF- xB
activation partially suppressed RANTES production.
Therefore, it could be assumed that other transcription
factors also might regulate LPS-stimulated RANTES
production in microglial cells as shown in other
groups (Boehlk et al, 2000; Lakics et al, 2000).

There are several reports that SB 203580 prevents
the expression of a NF- ¢B controlled reporter gene
in response to external stimuli. These authors suggest
that p38 MAPK affects NF- B activation through
activation of co-activators or intermediate kinases
(Beyaert et al, 1996, Wesselborg et al, 1997).
Although it has not been yet determined whether the
activation of members of the MAPK family is in-
volved in RANTES transcription in microglial cells
some reports showed that SB 203580 reduced trans-
cription of other cytokine genes such as IL-6 and
IFN- y in other cell types (Beyaer et al, 1996; Rincon
et al, 1998). Based on these results, we suggest that
NF- B can be activated via p38 MAPK pathway.
Further studies on the activation of NF- ¢B by the
p38 MAPK pathway will help us to understand the
mechanism of RANTES production in murine mi-
croglial cells.

In summary, our results show that the RANTES
production is regulated by MAPK, at least p38 MAPK,
and NF- ¢B in microglial cells (BV-2) stimulated by
LPS. And also, we suggest that the RANTES produc-
tion is modulated by the coordination of the p38
MAPK and NF- 4B cascade.
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