• 제목/요약/키워드: NF-${\kappa}B$ p65

Search Result 343, Processing Time 0.027 seconds

Effects of Cheonghyul-San on the Generation of Redox Status and on the Expression of NF-${\kappa}$B Dependent Proteins (청혈산(淸血散)이 Redox Status 및 NF-${\kappa}$B 의존성 단백질에 미치는 영향)

  • Oh, Jeong-Pyo;Jeong, Ji-Cheon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.464-472
    • /
    • 2009
  • The aim of this study was to investigate the effects of Cheonghyul-san on the generation of peroxynitrite ($ONOO^-$), nitric oxide (NO) and superoxide anion radical ( ${\cdot}\;O_2^-$), and on the expression of NF-${\kappa}$B-dependent proinflammatory proteins in ob/ob mice. Mice were grouped and treated for 5 weeks as follows. Both the normal lean (C57BL/6J black mice) and control obese (ob/ob mice) groups have received the standard chow. The experimental groups were fed with a diet of chow supplemented with 7.5, 15 and 30 mg Cheonghyul-san per 1 kg of body weight for 14 days. For this study, the fluorescent probes, namely 2',7'-dichlorodihydrofluorescein diacetate (DCFDA), 4,5-diaminofluorescein-2 (DAF-2) and dihydrorhodamine 123 (DHR 123) were used. Western blot was performed using anti-IKK-${\alpha}$, anti-phospho I${\kappa}$B-${\alpha}$, anti-NF-${\kappa}$B (p50, p65), anti-COX-2, anti-iNOS, anti-VCAM-1 antibodies, respectively. Cheonghyul-san prevented $H_2O_2$-induced cell death. Cheonghyul-san inhibited the generation of $ONOO^-$, NO and ${\cdot}\;O_2^-$ in the $H_2O_2$-treated LLC-$PK_1$ cells. The generation of $ONOO^-$, NO and ${\cdot}\;O_2^-$ were inhibited in the Cheonghyul-san-administered ob/ob mice groups. The GSH/GSSG ratio was decreased in the ob/ob mice, whereas the ratio was improved in the Cheonghyul-san-administered groups. Cheonghyul-san inhibited the protein expression levels of phospho-I${\kappa}$B-${\alpha}$, IKK-${\alpha}$, NF-${\kappa}$B (p50, p65), COX-2, iNOS and VCAM-1 genes. These results suggest that Cheonghyul-san is an effective scavenger of $ONOO^-$, ${\cdot}\;O_2^-$ and NO, and has an inhibitory effect on the expression of NF-${\kappa}$B-dependent inflammatory genes in ob/ob mice. Therefore, Cheonghyul-san might be used as a potential therapeutic drug against the diabetes- and obesity-related proinflammatory diseases.

Effects on Redox Status and NF-${\kappa}B$ Signaling by Ojunghwan (오정환(五精丸)이 ob/ob mouse에서 Redox Status 및 NF-${\kappa}B$ Signaling에 미치는 영향)

  • Baek, Ki-Beom;Jeong, Ji-Cheon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.5
    • /
    • pp.1202-1209
    • /
    • 2008
  • Peroxynitrite ($ONOO^-$), superoxide anion radical (${\cdot}\;{O_2}^-$) and nitric oxide (NO) are cytotoxic because they can oxidize several cellular components such as proteins, lipids and DNA. They have been implicated in the aging processes, and age-related diseases such as Alzheimer's disease, rheumatoid arthritis, cancer, diabetes, obesity and atherosclerosis. The aim of this study was to investigate the effects of Ojunghwan on the generation of peroxynitrite ($ONOO^-$), nitric oxide (NO) and superoxide anion radical (${\cdot}\;{O_2}^-$), and on the expression of $NF-{\kappa}B$-dependent inflammatory proteins in ob/ob mice. Mice were grouped and treated for 5 weeks as follows. Both the normal lean (C57/BL6J black mice) and control obese (ob/ob mice) groups have received the standard chow. The experimental groups were fed with a diet of chow supplemented with 30 and 90 mg Ojung-hwan per 1 kg of body weight for 14 days. For this study, the fluorescent probes, namely 2',7'-dichlorodihydrofluorescein diacetate (DCFDA), 4,5-diaminofluorescein (DAF-2) and dihydrorhodamine 123 (DHR 123) were used. Western blot was performed using anti-phospho $I{\kappa}B-{\alpha}$, $anti-IKK-{\alpha}$, $anti-NF-{\kappa}B$ (p50, p65), anti-COX-2, anti-iNOS, anti-VCAM-1 and anti-MMP-9 antibodies, respectively. Ojunghwan inhibited the generation of $ONOO^-$, NO and ${\cdot}\;{O_2}^-$ in the lipopolysaccharide (LPS)-treated mouse kidney postmitochondrial fraction in vitro. The generation of $ONOO^-$, NO, ${\cdot}\;{O_2}^-$ and $PGE_2$ were inhibited in the Ojunghwan-administered ob/ob mice groups. The GSH/GSSG ratio was decreased in the ob/ob mice, whereas that were improved in the Ojunghwan-administered groups. Ojunghwan inhibited the expression of $phospho-I{\kappa}B-{\alpha}$, $IKK-{\alpha}$, $NF-{\kappa}B$ (p50, p65), COX-2, iNOS, VCAM-1 and MMP-9 genes. These results suggest that Ojunghwan is an effective scavenger of $ONOO^-$, ${\cdot}\;{O_2}^-$, NO and $PGE_2$, and has an inhibitory effect on the expression of $NF-{\kappa}B$-dependent inflammatory genes in ob/ob mice. Therefore, Ojunghwan might be used as a potential therapeutic drug against the inflammation process and inflammation- related diseases.

Eriodictyol Inhibits the Production and Gene Expression of MUC5AC Mucin via the IκBα-NF-κB p65 Signaling Pathway in Airway Epithelial Cells

  • Yun, Chawon;Lee, Hyun Jae;Lee, Choong Jae
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.637-642
    • /
    • 2021
  • In this study, we investigated whether eriodictyol exerts an effect on the production and gene expression of MUC5AC mucin in human pulmonary epithelial NCI-H292 cells. The cells were pretreated with eriodictyol for 30 min and then stimulated with phorbol 12-myristate 13-acetate (PMA) for 24 h. The effect of eriodictyol on PMA-induced nuclear factor kappa B (NF-κB) signaling pathway was also investigated. Eriodictyol suppressed the MUC5AC mucin production and gene expression induced by PMA via suppression of inhibitory kappa Bα degradation and NF-κB p65 nuclear translocation. These results suggest that eriodictyol inhibits mucin gene expression and production in human airway epithelial cells via regulation of the NF-κB signaling pathway.

Involvement of IKK/IkBα/NF-kB p65 Signaling into the Regulative Effect of Engeletin on MUC5AC Mucin Gene Expression in Human Airway Epithelial Cells

  • Hossain, Rajib;Kim, Kyung-il;Li, Xin;Lee, Hyun Jae;Lee, Choong Jae
    • Biomolecules & Therapeutics
    • /
    • v.30 no.5
    • /
    • pp.473-478
    • /
    • 2022
  • In this study, we examined whether engeletin exerts an effect on the gene expression of MUC5AC mucin, in human pulmonary epithelial NCI-H292 cells. The cells were pretreated with engeletin for 30 min and stimulated with phorbol 12-myristate 13-acetate (PMA), for the following 24 h. The effect of engeletin on PMA-induced nuclear factor kappa B (NF-kB) signaling pathway was also investigated. Engeletin suppressed the mRNA expression and production of MUC5AC mucin, induced by PMA through the inhibition of degradation of inhibitory kappa Bα (IkBα) and NF-kB p65 nuclear translocation. These results suggest engeletin inhibits the gene expression of mucin through regulation of NF-kB signaling pathway, in human airway epithelial cells.

Rifampicin Inhibits the LPS-induced Expression of Toll-like Receptor 2 via the Suppression of NF-${\kappa}B$ DNA-binding Activity in RAW 264.7 Cells

  • Kim, Seong-Keun;Kim, Young-Mi;Yeum, Chung-Eun;Jin, Song-Hyo;Chae, Gue-Tae;Lee, Seong-Beom
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.6
    • /
    • pp.475-482
    • /
    • 2009
  • Rifampicin is a macrocyclic antibiotic which is used extensively for treatment against Mycobacterium tuberculosis and other mycobacterial infections. Recently, a number of studies have focused on the immune-regulatory effects of rifampicin. Therefore, we hypothesized that rifampicin may influence the TLR2 expression in LPS-activated RAW 264.7 cells. In this study, we determined that rifampicin suppresses LPS-induced TLR2 mRNA expression. The down-regulation of TLR2 expression coincided with decreased production of TNF-$\alpha$ Since NF-${\kappa}B$ is a major transcription factor that regulates genes for TLR2 and TNF-$\alpha$, we examined the effect of rifampicin on the LPS-induced NF-${\kappa}B$ activation. Rifampicin inhibited NF-${\kappa}B$ DNA-binding activity in LPS-activated RAW 264.7 cells, while it did not affect IKK$\alpha/\beta$ activity. However, rifampicin slightly inhibited the nuclear translocation of NF-${\kappa}B$ p65. In addition, rifampicin increased physical interaction between pregnane X receptor, a receptor for rifampicin, and NF-${\kappa}B$ p65, suggesting pregnane X receptor interferes with NF-${\kappa}B$ binding to DNA. Taken together, our results demonstrate that rifampicin inhibits LPS-induced TLR2 expression, at least in part, via the suppression of NF-${\kappa}B$ DNA-binding activity in RAW 264.7 cells. Thus, the present results suggest that the rifampicin-mediated inhibition of TLR2 via the suppression of NF-${\kappa}B$ DNA-binding activity may be a novel mechanism of the immune-suppressive effects of rifampicin.

The bio-complex "reaction pattern in vertebrate cells" reduces cytokine-induced cellular adhesion molecule mRNA expression in human endothelial cells by attenuation of NF-kappaB translocation

  • Ronnau, Cindy;Liebermann, Herbert E. H.;Helbig, Franz;Staudt, Alexander;Felix, Stephan B.;Ewert, Ralf;Landsberger, Martin
    • BMB Reports
    • /
    • v.42 no.2
    • /
    • pp.106-112
    • /
    • 2009
  • The bio-complex "reaction pattern in vertebrate cells"(RiV) is mainly represented by characteristic exosome-like particles - probably as reaction products of cells to specific stress. The transcription factor NF-kappaB plays a central role in inflammation. We tested the hypothesis that RiV particle preparations (RiV-PP) reduce cellular adhesion molecule (CAM) expression (ICAM-1, VCAM-1, E-selectin) by the attenuation of NF-kappaB translocation in human umbilical vein endothelial cells (HUVEC). After 4 hours, pre-incubation of HUVEC with RiV-PP before stimulation with TNF-alpha significantly reduced ICAM-1 (65.5${\pm}$10.3%) and VCAM-1 (71.1${\pm}$12.3%) mRNA expression compared to TNF-alpha-treated cells (100%, n=7). ICAM-1 surface expression was significantly albeit marginally reduced in RiV/TNF-alpha- treated cells (92.0${\pm}$5.6%, n=4). No significant effect was observed on VCAM-1 surface expression. In RiV/TNF-alpha-treated cells (n=4), NF-kappaB subunits p50 (85.7${\pm}$4.1%) and p65 (85.0${\pm}$1.8%) nuclear translocation was significantly reduced. RiV-PP may exert an anti-inflammatory effect in HUVEC by reducing CAM mRNA expression via attenuation of p50 and p65 translocation.

Significance of Tissue Expression and Serum Levels of Angiopoietin-like Protein 4 in Breast Cancer Progression: Link to NF-κB /P65 Activity and Pro-Inflammatory Cytokines

  • Shafik, Noha M;Mohamed, Dareen A;Bedder, Asmaa E;El-Gendy, Ahmed M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8579-8587
    • /
    • 2016
  • Background: The molecular mechanisms linking breast cancer progression and inflammation still remain obscure. The aim of the present study was to investigate the possible association of angiopoeitin like protein 4 (ANGPTL4) and its regulatory factor, hypoxia inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$), with the inflammatory markers nuclear factor kappa B/p65 (NF-${\kappa}B$/P65) and interleukin-1 beta (IL-$1{\beta}$) in order to evaluate their role in inflammation associated breast cancer progression. Materials and Methods: Angiopoietin-like protein 4 (ANGPTL4) mRNA expressions were evaluated using quantitative real time PCR and its protein expression by immunohistochemistry. DNA binding activity of NF-${\kappa}B$/P65 was evaluated by transcription factor binding immunoassay. Serum levels of ANGPTL4, HIF-$1{\alpha}$ and IL-$1{\beta}$ were immunoassayed. Tumor clinico-pathological features were investigated. Results: ANGPTL4 mRNA expressions and serum levels were significantly higher in high grade breast carcinoma ($1.47{\pm}0.31$ and $184.98{\pm}18.18$, respectively) compared to low grade carcinoma ($1.21{\pm}0.32$ and $171.76{\pm}7.58$, respectively) and controls ($0.70{\pm}0.02$ and $65.34{\pm}6.41$, respectively), (p<0.05). Also, ANGPTL4 high/moderate protein expression was positively correlated with tumor clinico-pathological features. In addition, serum levels of HIF-$1{\alpha}$ and IL-$1{\beta}$ as well as NF-${\kappa}B$/P65 DNA binding activity were significantly higher in high grade breast carcinoma ($148.54{\pm}14.20$, $0.79{\pm}0.03$ and $247.13{\pm}44.35$ respectively) than their values in low grade carcinoma ( $139.14{\pm}5.83$, $0.34{\pm}0.02$ and $184.23{\pm}37.75$, respectively) and controls ($33.95{\pm}3.11$, $0.11{\pm}0.02$ and $7.83{\pm}0.92$, respectively), (p<0.001). Conclusion: ANGPTL4 high serum levels and tissue expressions in advanced grade breast cancer, in addition to its positive correlation with tumor clinico-pathological features and HIF-$1{\alpha}$ could highlight its role as one of the signaling factors involved in breast cancer progression. Moreover, novel correlations were found between ANGPTL4 and the inflammatory markers, IL-$1{\beta}$ and NF-${\kappa}B$/p65, in breast cancer, which may emphasize the utility of these markers as potential tools for understanding interactions for axes of carcinogenesis and inflammation contributed for cancer progression. It is thus hoped that the findings reported here would assist in the development of new breast cancer management strategies that would promote patients' quality of life and ultimately improve clinical outcomes. However, large-scale studies are needed to verify these results.

Inhibition of $NF-{\kappa}B$ Activation Increases Oxygen-Glucose Deprivation-Induced Cerebral Endothelial Cell Death

  • Lee, Jin-U;Kim, Chul-Hoon;Shim, Kyu-Dae;Ahn, Young-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.2
    • /
    • pp.65-71
    • /
    • 2003
  • Increasing evidences suggest that ischemia-induced vascular damage is an integral step in the cascade of the cellular and molecular events initiated by cerebral ischemia. In the present study, employing a mouse brain endothelioma-derived cell line, bEnd.3, and oxygen-glucose deprivation (OGD) as an in vitro stroke model, the role of nuclear factor kappa B (NF-${\kappa}B$) activation during ischemic injury was investigated. OGD was found to activate NF-${\kappa}B$ and to induce bEnd.3 cell death in a time-dependent manner. OGD phosphorylated neither 32 Ser nor 42 Tyr of $I{\kappa}B{\alpha}$. OGD did not change the amount of $I{\kappa}B{\alpha}$. The extents of OGD-induced cell death after 8 h, 10 h, 12 h and 14 h of OGD were 10%, 35%, 60% and 85%, respectively. Reperfusion following OGD did not cause additional cell death, indicating no reperfusion injury after ischemic insult in cerebral endothelial cells. Three known as NF-${\kappa}B$ inhibitors, including pyrrolidine dithiocarbamate (PDTC) plus zinc, aspirin and caffeic acid phenethyl ester (CAPE), inhibited OGD-induced NF-${\kappa}B$ activation and increased OGD-induced bEnd.3 cell death in a dose dependent manner. There were no changes in the protein levels of bcl-2, bax and p53 which are modulated by NF-${\kappa}B$ activity. These results suggest that NF-${\kappa}B$ activation might be a protective mechanism for OGD-induced cell death in bEnd.3.

Effects of Sotosaja-hwan on the Generation of ROS, RNS, and on the Expression of NF-${\kappa}B$-dependent Proteins in ob/ob Mouse (소도사자환이 ob/ob mouse에서 ROS/ RNS 생성 억제 및 NF-${\kappa}B$ 의존성 단백질에 미치는 영향)

  • Bang, Yong-Suk;Jeong, Ji-Cheon
    • The Journal of Korean Medicine
    • /
    • v.30 no.1
    • /
    • pp.51-63
    • /
    • 2009
  • Objectives: Peroxynitrite ($ONOO^-$), superoxide anion radical (${\cdot}{O_2}^-$ and nitric oxide (NO) are cytotoxic because they can oxidize several cellular components such as proteins, lipids and DNA. They have been implicated in the aging processes, and age-related diseases such as Alzheimer's disease, rheumatoid arthritis, cancer, diabetes, obesity and atherosclerosis. The aim of this study was to investigate the $ONOO^-$, NO, ${\cdot}{O_2}^-$ scavenging and NF-${\kappa}B$ related anti-inflammatory activities of Sotosaja-hwan in ob/ob mice. Methods: Mice were grouped and treated for 5 weeks as follows. Both the normal lean (C57/BL6J black mice) and control obese (ob/ob mice) groups have received standard chow. The experimental groups were fed with a diet of chow supplemented with 30 and 90 mg Sotosaja-hwan per 1 kg of body weight for 14 days. For this study, the fluorescent probes, namely 2',7'-dichlorodihydrofluorescein diacetate (DCFDA), 4,5-diaminofluorescein (DAF-2) and dihydrorhodamine 123 (DHR 123) were used. Western blotting was performed using anti-phospho-$I{\kappa}B$-${\alpha}$, anti-IKK-${\alpha}$, anti-NF-${\kappa}B$ (p50, p65), anti-COX-2, anti-iNOS, anti-YCAM-1 and anti-MMP-9 antibodies, respectively. Results: Sotosaja-hwan inhibited the generation of $ONOO^-$, NO and ${\cdot}{O_2}^-$ in the lipopolysaccharide (LPS)-treated mouse kidney postmitochondrial fraction in vitro. The generation of $ONOO^-$, NO, ${\cdot}{O_2}^-$ and PGE2 were inhibited in the Sotosaja-hwan-administered ob/ob mice groups. The GSH/GSSG ratio was decreased in the ob/ob mice, whereas the ratio was improved in the Sotosaja-hwan-administered groups. Sotosaja-hwan inhibited the protein expression levels of phospho-$I{\kappa}B$-${\alpha}$, IKK-${\alpha}$, NF-${\kappa}B$ (p50, p65), COX-2, iNOS, YCAM-1 and MMP-9 genes. Conclusions: These results suggest that Sotosaja-hwan is an effective $ONOO^-$, ${\cdot}{O_2}^-$ and NO scavenger and has NF-kB related anti-inflammatory activity in ob/ob mice. Therefore, Sotosaja-hwan might be a potential therapeutic drug against the inflammation process and inflammation-related diseases.

  • PDF

Inhibition of the Induction of Nitric Oxide Synthase by Kobusin

  • Kim, Sang-Kyum;Pokharel, Yuba-Raj;Kim, Ok;Woo, Eun-Rhan;Kang, Keon-Wook
    • Toxicological Research
    • /
    • v.23 no.2
    • /
    • pp.123-126
    • /
    • 2007
  • We isolated a lignan, kobusin from Geranium thunbergii and studied its effect on the expression of inducible nitric oxide synthase (iNOS) gene in a monocyte/macrophage cell line, RAW264.7 cells. Kobusin inhibited lipopolysaccharide (LPS)-stimulated NO production and the expression of iNOS in a concentration-dependent manner. To identify the mechanistic basis for its inhibition of iNOS induction, we examined the effect of kobusin on both the luciferase reporter activity using $NF-{\kappa}B$ minimal promoter and the nuclear translocation of p65. Kobusin suppressed the reporter gene activity and the LPS-induced movement of p65 in to nucleus. $NF-{\kappa}B$ activation is controlled by the phosphorylation and subsequent degradation of $I-{\kappa}B{\alpha}$, and in the present study, we found that $I-{\kappa}B{\alpha}$ phosphorylation was also inhibited by kobusin. Our findings indicate that kobusin may provide a developmental basis for an agent against inflammatory diseases.