• 제목/요약/키워드: NF-${\kappa}B$ p65

검색결과 343건 처리시간 0.023초

Lipopolysaccharide로 자극된 RAW 264.7 세포와 마우스 귀부종 모델에 대한 참치 심장 Dichloromethane 분획물의 항염증 효과 (Anti-Inflammatory Activity of Dichloromethane Fraction from Katsuwonus pelamis Heart in LPS-Induced RAW 264.7 Cells and Mouse Ear Edema)

  • 김민지;배난영;최현덕;김꽃봉우리;박선희;성낙윤;변의홍;남희섭;안동현
    • 한국미생물·생명공학회지
    • /
    • 제45권2호
    • /
    • pp.101-109
    • /
    • 2017
  • 본 실험에서는 참치 심장 70% ethanol 추출물을 dichloromethane으로 분획한 후 항염증 효과를 확인하기 위해 RAW 264.7 세포에 LPS로 염증을 유도시켜 염증 매개성 물질인 NO와 pro-inflammatory cytokine의 분비량의 변화를 확인하였다. 그 결과, 참치 심장 dichloromethane 분획물을 처리하였을 때, 농도 의존적으로 NO의 생성량을 감소시키는 것을 확인하였으며, 특히, $100{\mu}g/ml$에서 가장 높은 억제효과를 나타내었다. 따라서 dichloromethane 분획물의 억제 활성이 세포사멸에 의한 감소인지 알아보기 위해서 MTT assay를 하였을 때, 세포 생존율이 dichloromethane 분획물을 PBS 처리군과 비교하였을 때 유의적인 차이가 나타나지 않음을 확인하였고, 이를 통해 dichloromethane 분획물이 NO 및 전염증성 cytokine의 분비를 효과적으로 억제할 수 있는 물질임을 확인할 수 있었다. Dichloromethane 분획물을 처리하였을 때, 염증 관련 단백질 발현 정도를 western blot을 통해 확인한 결과, LPS에 의해 발현이 증가된 $NF-{\kappa}B$, iNOS 및 COX-2는 분획물을 처리함으로써 농도 의존적으로 감소되는 것을 확인할 수 있었다. 또한 dichloromethane 분획물의 처리가 인산화된 MAPKs의 발현을 저해함을 확인하여 참치 심장 dichloromethane 분획물이 $NF-{\kappa}B$와 MAPKs의 발현을 억제시킴으로써 NO 및 pro-inflammatory cytokine의 분비량을 감소시킴을 확인할 수 있었다. 동물 모델에서는, dichloromethane 분획물을 처리하였을 때 croton oil에 의한 귀 부종이 농도 의존적으로 감소함을 확인하였고, 특히, $250mg/kg{\cdot}body\;weight$ 농도로 투여시 시판 항염증제인 predinisolone을 $50mg/kg{\cdot}body\;weight$ 농도로 투여한 그룹과 유사한 효과를 나타내었다. 조직학적 변화를 확인한 결과에서는, 진피와 경피의 두께가 감소하였으며 진피내 mast cell 침윤이 감소되는 것을 확인할 수 있었다. 따라서 참치심장 dichloromethane 분획물이 효과적인 염증 예방 및 부종 완화를 위한 치료제로서 활용 가능성을 확인하였다.

Shewanella oneidensis PKA1008 유래 알긴산 분해 효소에 의해 제조된 알긴산 올리고당의 항염증 효과 (Anti-Inflammatory Effect of Alginate Oligosaccharides Produced by an Alginate-Degrading Enzyme from Shewanella oneidensis PKA1008 on LPS-Induced RAW 264.7 Cells)

  • 김민지;배난영;박시우;김꽃봉우리;박지혜;박선희;안동현
    • 한국수산과학회지
    • /
    • 제48권6호
    • /
    • pp.888-897
    • /
    • 2015
  • The anti-inflammatory effect of alginate oligosaccharides on LPS-induced RAW 264.7 cells was investigated at different time points (0-60 h). The alginate oligosaccharides were produced by an alginate-degrading enzyme from Shewanella oneidensis PKA1008. The alginate oligosaccharides decreased the production of nitric oxide and proinflammatory cytokines [tumor necrosis factor-${\alpha}$, interleukin (IL)-$1{\beta}$, and IL-6] in a dose-dependent manner. The alginate oligosaccharides showed peak anti-inflammatory activity after 36 h of incubation; at that time point, reduced protein expression of NF-${\kappa}B$ p65, iNOS, and COX-2 was detected. Furthermore, the alginate oligosaccharide treatment reduced the formation of ear edema at 36 h compared to samples examined at 0 h when the oligosaccharides were administered at 50 and 250 mg/kg body weight, as well as dermal thickness and mast cell numbers in a histological analysis. These results suggest that alginate oligosaccharides are a promising anti-inflammatory agent.

Protective Effect of 3-Bromo-4,5-Dihydroxybenzaldehyde from Polysiphonia morrowii Harvey against Hydrogen Peroxide-Induced Oxidative Stress In Vitro and In Vivo

  • Cho, Su-Hyeon;Heo, Soo-Jin;Yang, Hye-Won;Ko, Eun-Yi;Jung, Myeong Seon;Cha, Seon-Heui;Ahn, Ginnae;Jeon, You-Jin;Kim, Kil-Nam
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권8호
    • /
    • pp.1193-1203
    • /
    • 2019
  • We investigated the protective effects of 3-bromo-4,5-dihydroxybenzaldehyde (BDB) from Polysiphonia morrowii Harvey against hydrogen peroxide ($H_2O_2$)-induced apoptosis in Vero cells. BDB exhibited scavenging activity for DPPH, hydroxyl, and alkyl radicals. BDB also inhibited $H_2O_2$-induced lipid peroxidation, cell death, and apoptosis in Vero cells by inhibiting the production of ROS. To evaluate the molecular mechanisms of apoptosis inhibition, the expression of Bax/Bcl-xL and $NF-{\kappa}B$ was assessed by western blot assay. BDB significantly suppressed the cleavage of caspase-9 and PARP and reduced Bax levels in $H_2O_2$-induced Vero cells. Besides, BDB suppressed the phosphorylation of $NF-{\kappa}$B and the translocation of p65 in $H_2O_2$-induced cells. Furthermore, we evaluated the effect of BDB on ROS production, cell death, and lipid peroxidation in an $H_2O_2$-stimulated zebrafish embryo model. Taken together, these results indicated that ROS generation and cell death were significantly inhibited by BDB in zebrafish embryos, thereby proving that BDB exerts excellent antioxidant activity in vitro and in vivo.

Dehydrocostus lactone inhibits NFATc1 via regulation of IKK, JNK, and Nrf2, thereby attenuating osteoclastogenesis

  • Lee, Hye In;Lee, Gong-Rak;Lee, Jiae;Kim, Narae;Kwon, Minjeong;Kim, Hyun Jin;Kim, Nam Young;Park, Jin Ha;Jeong, Woojin
    • BMB Reports
    • /
    • 제53권4호
    • /
    • pp.218-222
    • /
    • 2020
  • Excessive and hyperactive osteoclast activity causes bone diseases such as osteoporosis and periodontitis. Thus, the regulation of osteoclast differentiation has clinical implications. We recently reported that dehydrocostus lactone (DL) inhibits osteoclast differentiation by regulating a nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), but the underlying mechanism remains to be elucidated. Here we demonstrated that DL inhibits NFATc1 by regulating nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and nuclear factor-erythroid 2-related factor 2 (Nrf2). DL attenuated IκBα phosphorylation and p65 nuclear translocation as well as decreased the expression of NF-κB target genes and c-Fos. It also inhibited c-Jun N-terminal kinase (JNK) but not p38 or extracellular signal-regulated kinase. The reporter assay revealed that DL inhibits NF-κB and AP-1 activation. In addition, DL reduced reactive oxygen species either by scavenging them or by activating Nrf2. The DL inhibition of NFATc1 expression and osteoclast differentiation was less effective in Nrf2-deficient cells. Collectively, these results suggest that DL regulates NFATc1 by inhibiting NF-κB and AP-1 via down-regulation of IκB kinase and JNK as well as by activating Nrf2, and thereby attenuates osteoclast differentiation.

사람 치은섬유모세포에서 잎꼬시래기 에탄올 추출물의 항염증 및 항산화 효과 (Anti-Inflammatory and Antioxidative Effects of Gracilaria textorii Ethanol Extract in LPS-PG-Stimulated Human Gingival Fibroblast-1 Cells)

  • 박충무;윤현서
    • 대한통합의학회지
    • /
    • 제7권4호
    • /
    • pp.61-69
    • /
    • 2019
  • Purpose : Human gingival fibroblast cell is one of the the main cell types in periodontal tissue, which they can show anti-inflammatory activity through the production of numerous lines of inflammatory mediators such as inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and interleukins. Porphyromonas gingivalis, one of the oral pathogens, has reported to play a critical role in the development of periodontal diseases. This study aimed to investigate anti-inflammatory and antioxidative activities of Gracilaria textorii ethanol extract (GTEE) in P. gingivalis derived lipopolysaccharide (LPS-PG) stimulated human gingival fibroblast (HGF)-1 cell line. Methods : In order to analyze anti-inflammatory and antioxidative activities of GTEE in HGF-1 cell line, NOS enzyme activity, expression levels of iNOS, COX-2, NAD(P)H quinone dehydrogenase (NQO)1 and their transcription factors were estimated by Griess reaction and western hybridization. Results : LPS-PG induced overexpression of iNOS and COX-2, which was significantly attenuated by GTEE treatment in a dose-dependent manner without any cytotoxicity. In addition, intracellular NOS activity was in accordance with the result of iNOS expression. Due to important role in the regulation of inflammatory responses, phosphorylated status of p65 and c-jun, each subunit of nuclear factor (NF)-κB and activator protein (AP)-1, was also dose-dependently ameliorated by GTEE treatment. One of phase II enzymes, NQO1, and its transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), were analyzed since elevated phase II enzyme expression inhibited inflammatory response, which was significantly elevated by GTEE treatment in HGF-1 cell line. Conclusion : In conclusion, GTEE mitigated LPS-PG-stimulated inflammatory responses by attenuating NF-κB and AP-1 activation as well as accelerating NQO1 and Nrf2 expression in HGF-1 cell line. These results indicate that GTEE might be utilized a promising strategy for potential anti-inflammatory agent in periodontal diseases.

Anti-osteoarthritis Effects of the Combination of Boswellia serrata, Curcuma longa, and Terminalia chebula Extracts in Interleukin-1β-stimulated Human Articular Chondrocytes

  • Kim, Hae Lim;Min, Daeun;Lee, Dong-Ryung;Lee, Sung-Kwon;Choi, Bong-Keun;Yang, Seung Hwan
    • 동의생리병리학회지
    • /
    • 제36권2호
    • /
    • pp.79-87
    • /
    • 2022
  • In this study, extracts of Boswellia serrata gum resin, Curcuma longa rhizome, and Terminalia chebula fruit were combined in different ratios, and their anti-osteoarthritis effects were compared to determine which combination had the best synergistic effect. B. serrata, C. longa, and T. chebula extracts in a 2:1:2 ratio exhibited higher antioxidative activity in scavenging DPPH radicals than did the individual extracts alone or the other extract combinations. Additionally, the 2:1:2 combination significantly improved the levels of enzymatic antioxidants and antioxidant-related proteins. Moreover, this same combination ratio decreased the protein levels of matrix metalloproteinase (MMP) 3 and MMP13 in interleukin-1β-stimulated human articular chondrocytes (HCHs) and increased those of aggrecan and collagen type II alpha 1 chain (COL2A1). Analysis of the underlying mechanisms revealed that the 2:1:2 combination significantly inhibited the phosphorylation of nuclear factor kappa B (NF-κB) p65, extracellular regulated protein kinase (ERK), and p38 mitogen-activated protein kinase (MAPK). Therefore, the 2:1:2 combination of these three plant extracts has the best potential for use as an effective dietary supplement for improving joint health compared with the individual extracts and their other combination ratios.

파골세포의 분화와 뼈 흡수에 천남성의 억제 효과 (Inhibitory Effects of Rhizoma Arisaematis on Osteoclast Differentiation and Bone Resorption)

  • 이명수;이창훈;박기인;김하영
    • 동의생리병리학회지
    • /
    • 제25권1호
    • /
    • pp.65-70
    • /
    • 2011
  • Osteoclasts play a critical role in bone-related diseases such as osteoporosis and rheumatoid arthritis by resorbing the bone. Recently, natural products from plants have been extensively studied as therapeutic drugs to treat and prevent various diseases. Here, we examined the effects of rhizoma arisaematis on ostoclast differentiation and bone resorption. We showed that rhizoma arisaematis significantly suppressed receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation in bone marrow-derived macrophages (BMMs) in a dose dependent manner but have little or no effect on the cytotoxicity of BMMs and RAW264.7 cells. We found that rhizoma arisaematis iarrow-ed the RANKL-induced c-Fos and nuclear factor of activated T cells (NFAT)c1, which is a master regulator of osteoclast differentiation. Furthermore, rhizoma arisaematis suppressed the mRNA expression of tartrate resistant-acid phosphatase and cathepsin K iaduced by RANKL in BMMs. in y chanistic studies, rhizoma arisaematis considerably iarrow-ed I-${\kappa}B$ degradation, which is a negative regulator of NF-${\kappa}B$, but iaduced the phosphderlation of p-38, ERK, and JNK.MMlso, we found that rhizoma arisaematis significantly iarrow-ed osteoclastic bone resorption. Taken tarether, our results suggest that rhizoma arisaematis suppresses osteoclast differentiation through down-regulatd the mRANKL-induced c-Fos and NFATc1 expression and iarrow-s bone resorption.

Protective Effects of the Ethanol Extract of Viola tianshanica Maxim against Acute Lung Injury Induced by Lipopolysaccharides in Mice

  • Wang, Xue;Yang, Qiao-Li;Shi, Yu-Zhu;Hou, Bi-Yu;Yang, Sheng-Qian;Huang, Hua;Zhang, Li;Du, Guan-Hua
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권9호
    • /
    • pp.1628-1638
    • /
    • 2017
  • Viola tianshanica Maxim, belonging to the Violaceae plant family, is traditionally used in Uighur medicine for treating pneumonia, headache, and fever. There is, however, a lack of basic understanding of its pharmacological activities. This study was designed to observe the effects of the ethanol extract (TSM) from Viola tianshanica Maxim on the inflammation response in acute lung injury (ALI) induced by LPS and the possible underlying mechanisms. We found that TSM (200 and 500 mg/kg) significantly decreased inflammatory cytokine production and the number of inflammatory cells, including macrophages and neutrophils, in bronchoalveolar lavage fluid. TSM also markedly inhibited the lung wet-to-dry ratio and alleviated pathological changes in lung tissues. In vitro, after TSM ($12.5-100{\mu}g/ml$) treatment to RAW 264.7 cells for 1 h, LPS ($1{\mu}g/ml$) was added and the cells were further incubated for 24 h. TSM dose-dependently inhibited the levels of proinflammatory cytokines, such as NO, $PGE_2$, $TNF-{\alpha}$, IL-6, and $IL-1{\beta}$, and remarkably decreased the protein and mRNA expression of $TNF-{\alpha}$ and IL-6 in LPS-stimulated RAW 264.7 cells. TSM also suppressed protein expression of $p-I{\kappa}Ba$ and p-ERK1/2 and blocked nuclear translocation of $NF-{\kappa}B$ p65. The results indicate that TSM exerts anti-inflammatory effects related with inhibition on $NF-{\kappa}B$ and MAPK (p-ERK1/2) signaling pathways. In conclusion, our data demonstrate that TSM might be a potential agent for the treatment of ALI.

Resolvin D5, a Lipid Mediator, Inhibits Production of Interleukin-6 and CCL5 Via the ERK-NF-κB Signaling Pathway in Lipopolysaccharide-Stimulated THP-1 Cells

  • Chun, Hyun-Woo;Lee, Jintak;Pham, Thu-Huyen;Lee, Jiyon;Yoon, Jae-Hwan;Lee, Jin;Oh, Deok-Kun;Oh, Jaewook;Yoon, Do-Young
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권1호
    • /
    • pp.85-92
    • /
    • 2020
  • One of the omega-3 essential fatty acids, docosahexaenoic acid (DHA), is a significant constituent of the cell membrane and the precursor of several potent lipid mediators. These mediators are considered to be important in preventing or treating several diseases. Resolvin D5, an oxidized lipid mediator derived from DHA, has been known to exert anti-inflammatory effects. However, the detailed mechanism underlying these effects has not yet been elucidated in human monocytic THP-1 cells. In the present study, we investigated the effects of resolvin D5 on inflammation-related signaling pathways, including the extracellular signal-regulated kinase (ERK)-nuclear factor (NF)-κB signaling pathway. Resolvin D5 downregulated the production of interleukin (IL)-6 and chemokine (C-C motif) ligand 5 (CCL5). Additionally, these inhibitory effects were found to be modulated by mitogen-activated protein kinase (MAPK) and NF-κB in lipopolysaccharide (LPS)-treated THP-1 cells. Resolvin D5 inhibited the LPS-stimulated phosphorylation of ERK and translocation of p65 and p50 into the nucleus, resulting in the inhibition of IL-6 and CCL5 production. These results revealed that resolvin D5 exerts anti-inflammatory effects in LPS-treated THP-1 cells by regulating the phosphorylation of ERK and nuclear translocation of NF-κB.