• 제목/요약/키워드: NF-${\kappa}B$ inhibitory activity

검색결과 168건 처리시간 0.023초

Anti-inflammatory Metabolites of Agrimonia pilosa Ledeb. and Their Mechanism

  • Park, Mi Jin;Ryu, Da Hye;Cho, Jwa Yeoung;Kang, Young-Hwa
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 춘계학술발표회
    • /
    • pp.13-13
    • /
    • 2018
  • The anti-inflammatory (INF) compounds (1-15) were isolated from Agrimonia pilosa Ledeb. (APL) by activity-guided isolation technique. The isolated compounds (1-15) were identified as quercetin-7-O-rhanmoside (1), apigenin-7-O-glycoside (2), kaempferol-7-O-glycoside (3), apigenin-7-O-[6"-(butyl)-glycoside] (4), querceitn (5), kaempferol (6), apigenin (7), apigenin-7-O-[6"-(pentyl)-glycoside] (8), agrimonolide (9), agrimonolide-6-O-glucoside (10), desmethylagrimonolide (11), desmethylagrimonolide-6-O-glucoside (12), luteolin (13), vitexin (14) and isovitexin (15). Flavonoids, compound 2, 3, 11, and 14-15 have been found in APL for the first time. Furthermore, two novel flavone derivatives, compound 4 and 8, have been isolated inceptively in plant. In the no cytotoxicity concentration ranges of $0-20{\mu}M$, nitric oxide (NO) production level of 1-15 was estimated in LPS-treated Raw 264.7 macrophage cells. The flavone aglycones, 7 (apigenin, $IC_{50}=3.69{\pm}0.34{\mu}M$), 13 (luteolin, $IC_{50}=4.62{\pm}0.43{\mu}M$), 6 (kaempferol, $IC_{50}=14.43{\pm}0.23{\mu}M$) and 5 (quercetin, $IC_{50}=19.50{\pm}1.71{\mu}M$), exhibited excellent NO inhibitory (NOI) activity in dose-dependent manner. In the structure activity relationship (SAR) study of apigenin-derivatives (APD), apigenin; Api, apigenin-7-O-glucoside; Api-G, apignenin-7-O-[6"-(butyl)-glycoside]; Api-BG and apignenin-7-O-[6"-(pentyl)-glycoside]; Api-P, from APL on INF activity was investigated. The INF mediators level such as NO, INF-cytokines, NF-KB proteins, iNOS and COX-2 were sharply increased in Raw 264.7 cells by LPS. When pretreatment with APD in INF induced macrophages, NOI activity of Api was most effective than other APD with $IC_{50}$ values of $3.69{\pm}0.77{\mu}M$. And the NOI activity was declined in the following order: Api-BG ($IC_{50}=8.91{\pm}1.18{\mu}M$), Api-PG ($IC_{50}=13.52{\pm}0.85{\mu}M$) and API-G ($IC_{50}=17.30{\pm}0.66{\mu}M$). The NOI activity of two novel compounds, Api-PG and Api-BG were lower than their aglycone; Api, but more effective than Api-G (NOI: Api-PG and Api-BG). And their suppression ability on INF cytokines such as $TNF-{\alpha}$, $IL-1{\beta}$ and IL-6 mRNA showed the similar tendency. Therefore, the anti-INF mechanism study of Api-PG and Api-BG on nuclear factor-kappa B ($NF-{\kappa}B$) pathway, representative INF mechanism, was investigated and Api was used as positive control. Api-BF was more effectively prevent the than phosphorylation of $pI{\kappa}B$ kinase (p-IKK) and p65 than Api-PG in Raw 264.7 cells. In contrast, Api-PG and Api-BG were not reduced the phosphorylation of inhibitor of kappa B alpha ($I{\kappa}B{\alpha}$). Moreover, pretreatment with Api-PG and Api-BG, dose-dependently inhibited LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) mRNAs and proteins in macrophage cells, and their expression were correlated with their NOI activity. Therefore, APL can be utilized to health promote agent associated with their AIN metabolites.

  • PDF

Formosanin C attenuates lipopolysaccharide-induced inflammation through nuclear factor-κB inhibition in macrophages

  • Yin, Limin;Shi, Chaohong;Zhang, Zhongchen;Wang, Wensheng;Li, Ming
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권5호
    • /
    • pp.395-401
    • /
    • 2021
  • Extended inflammation and cytokine production pathogenically contribute to a number of inflammatory disorders. Formosanin C (FC) is the major diosgenin saponin found in herb Paris formosana Hayata (Liliaceae), which has been shown to exert anti-cancer and immunomodulatory functions. In this study, we aimed to investigate anti-inflammatory activity of FC and the underlying molecular mechanism. RAW264.7 macrophages were stimulated with lipopolysaccharide (LPS) or pretreated with FC prior to being stimulated with LPS. Thereafter, the macrophages were subjected to analysis of the expression levels of pro-inflammatory mediators, including nitric oxide (NO), prostaglandin E2 (PGE), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6, as well as two relevant enzymes, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). The analysis revealed that FC administration blunted LPS-induced production of NO and PGE in a dose-dependent manner, while the expression of iNOS and COX-2 at both mRNA and protein levels was inhibited in LPS-stimulated macrophages pre-treated with FC. Moreover, LPS stimulation upregulated mRNA expression and medium release of TNF-α, IL-1β, and IL-6, whereas this effect was blocked upon FC pre-administration. Mechanistic studies showed that inhibitory effects of FC on LPS-induced inflammation were associated with a downregulation of IκB kinase, IκB, and p65/NF-κB pathway. Taken together, these data suggest that FC possesses an inflammation-suppressing activity, thus being a potential agent for the treatment of inflammation-associated disorders.

Inhibitory Effects of Artemisia asiatica on Osteoclast Formation Induced by Periodontopathogens

  • Moon, Sun-Young;Choi, Bong-Kyu;Cha, Jeong-Heon;Min, Chon-Ki;Son, Mi-Won;Yoo, Yun-Jung
    • Food Science and Biotechnology
    • /
    • 제14권1호
    • /
    • pp.94-98
    • /
    • 2005
  • Bone resorption surrounding tooth root causes tooth loss in periodontitis patients. Osteoclast has bone resorption activity. Effects of Artemisia asiatica on bone resorption induced by periodontopathogens, Porphyromonas gingivalis and Treponema denticola, were examined using co-culture systems of mouse osteoblasts and bone marrow cells. Addition of A. asiatica ethanol extract to bacterial sonicate abolished bacteria-induced osteoclastogenesis. To determine inhibitory mechanism of A. asiatica against osteoclastogenesis, effects of A. asiatica on expressions of osteoclastogenesis-inducing factors such as receptor activator of NF-${\kappa}B$ ligand (RANKL), prostaglandin $E_2\;(PGE_2)$, interleukin (IL)-1, and tumor necrosis factor (TNF)-${\alpha}$, in osteoblasts were examined. A. asiatica suppressed expressions of RANKL, $PGE_2$, IL-$1{\beta}$, and TNF-${\alpha}$ increased by each bacterial sonicate. These results suggest inhibitory action of A. asiatica against osteoclastogenesis is associated with down-regulations of RANKL, $PGE_2$ IL-$1{\beta}$, and TNF-${\alpha}$ expressions.

하고초(夏枯草)에서 추출한 Ursolic acid의 파골세포 분화 억제 효과 (Inhibitory Effects of Ursolic Acid from Prunella Vulgaris on Osteoclast Differentiation)

  • 허자경;황덕상;이진무;이창훈;장준복;이경섭
    • 대한한방부인과학회지
    • /
    • 제27권2호
    • /
    • pp.59-70
    • /
    • 2014
  • Purpose: This study was conducted to evaluate the inhibitory effect of ursolic acid from Prunella vulgaris on osteoclast differentiation. Methods: MTT-assay was performed to estimate cytotoxicity of ursolic acid from Prunella vulgaris in BMMs stimulated with M-CSF. TRAP staining, TRAP activity and Real-time PCR were performed to know the inhibitory effect on osteoclast differentiation. Actin ring formation were analysed to observe the effect of ursolic acid from Prunella vulgaris. Results: Ursolic acid from Prunella vulgaris has no cytotoxicity at the concentration of $1{\mu}g/ml$ or lower. Ursolic acid decreased the number of TRAP positive cells and the expression of NFATc1 gene, c-Fos gene, TRAP and OSCAR in BMMs stimulated with RANKL. Ursolic acid restrained the formation of actin ring. Ursolic acid inhibited NF-${\kappa}B$ activity by inducing degradation of p-$IkB{\alpha}$. Conclusions: Ursolic acid from Prunella vulgaris has the inhibitory effect of osteoclast differentiation and bone resorption. Futher studies are needed to treat osteoporosis by usolic acid from Prunella vulgaris.

천연자(川楝子)의 파골세포 분화 억제기전 연구 (A Study on Inhibitory Mechanism of Melia Fructus Extract on Osteoclast Differentiation)

  • 윤영진;이진무;이창훈;장준복;이경섭
    • 대한한방부인과학회지
    • /
    • 제25권2호
    • /
    • pp.1-11
    • /
    • 2012
  • Objectives: This study was conducted to evaluate the inhibitory effect of Melia Fructus extract on osteoclast differentiation. Methods: MTT-assay was performed to estimate cytotoxicity of Melia Fructus extract in BMMs stimulated with M-CSF. TRAP staining, TRAP activity and Real-time PCR were performed to know the inhibitory effect on osteoclast differentiation. Actin ring formation were analysed to observe the effect of Melia Fructus extract. Results: Melia Fructus extract decreased the number of TRAP positive cells and the expression of NFATc1 gene, c-Fos gene, TRAP and OSCAR in BMMs stimulated with RANKL. Melia Fructus extract has no cytotoxicity at the concentration used in this study. Melia Fructus extract restrained the formation of actin ring. Melia Fructus inhibited NF-${\kappa}B$ activity by inducing degradation of p-$IkB{\alpha}$. Conclusions: Melia Fructus has the inhibitory effect of osteocalst differentiation and bone resorption. Further studies are needed to treat osteoporosis by herbal medicine containing Melia Fructus.

마우스 대식세포에서 도기탕 (導氣湯) 메탄올 추출물의 항산화 및 항염증 효과 (Anti-oxidative and anti-inflammatory effect of Do-Ki-Tang methanol extract in mouse macrophage cells)

  • 김동완;윤현정;허준영;김태훈;조현진;박선동
    • 대한본초학회지
    • /
    • 제25권4호
    • /
    • pp.103-112
    • /
    • 2010
  • Objective : The aim of this study was to determine whether methanol extract of Do-Ki-Tang (DKT) inhibit free radical generation and production of nitrite an index of NO, $PGE_2$, iNOS, COX-2 and pro-inflammatory cytokines such as TNF-${\alpha}$, IL-$1{\beta}$, IL-6 and MCP-1 in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Methods : Cytotoxic activity of extract on RAW 264.7 cells was measured using 5-(3-caroboxymeth-oxyphenyl)-2H-tetra-zolium inner salt (MTS) assay. The expression level of inflammatory response-related proteins was confirmed by western blot. The production of proinflammatory cytokines was measured by ELISA. Results : Our results indicated that DKT scavenged DPPH radical and nitric oxide in vitro. Moreover, DKT significantly inhibited the LPS-induced NO, $PGE_2$ production and iNOS, COX-2 expression accompanied by an attenuation of TNF-${\alpha}$, IL-$1{\beta}$, IL-6 and MCP-1 formation in macrophages. Furthermore, DKT treatment also blocked LPS-induced intracellular ROS production and the activation of NF-${\kappa}B$ and MAPKs. Conclusion : Our data suggest that the anti-inflammatory effect of DKT is mediated through down-modulation of pro-inflammatory mediators and cytokines by blocking the signaling pathways of NF-${\kappa}B$ and MAPKs. These inhibitory effects by DKT represent a potential therapeutic approach to the treatment of inflammatory diseases.

RANKL에 의해 유도되는 파골세포 분화에 대한 시금치 추출물의 영향 (Effect of Spinach Extract on RANKL-Mediated Osteoclast Differentiation)

  • 김동규;김미혜;강민정;신정혜
    • 한국식품영양과학회지
    • /
    • 제44권4호
    • /
    • pp.532-539
    • /
    • 2015
  • 파골세포의 분화에 대한 시금치 추출물의 영향을 확인하고자 RANKL을 처리한 RAW264.7 세포에서 세포독성, TRAP(+) 다핵세포의 형성, 파골세포 분화 관련 유전자의 발현, 그리고 단백질 발현을 확인하였다. 물과 25, 50, 75 및 100% 에탄올 시금치 추출물의 세포독성을 측정한 결과 모든 추출물들이 $100{\mu}g/mL$ 이하의 농도에서 RAW264.7 세포에 독성을 유발하지 않았다. TRAP 염색을 통해 TRAP(+) 다핵세포의 수와 효소 활성을 측정한 결과 물 추출물을 제외한 모든 추출물이 대조군에 비해 분화 억제 및 효소 활성 저해 효과가 있었다. 특히 $100{\mu}g/mL$ 농도의 100% 에탄올 추출물은 RANKL만 처리한 대조군과 비교해 80%의 유의한 TRAP(+) 다핵세포 숫자 감소와 44%의 TRAP 효소 활성 저해율을 보였다. 시금치 에탄올 추출물은 RANKL에 의한 파골세포 분화의 지표가 되는 관련유전자인 NFAT, c-FOS, cathepsin K 및 TRAP의 발현을 억제하였다. 또한 단백질 수준에서 시금치 에탄올 추출물은 RANKL에 의해 증가된 NFATc1의 발현을 현저히 감소시키는 것으로 확인되었고, 또한 c-FOS의 활성화 형태인 인산화된 c-FOS의 발현뿐만 아니라 인산화되지 않은 비활성의 c-FOS 발현도 감소시켰다. 반면 파골세포의 분화에 직간접적인 영향을 미친다고 알려진 MAPK 중 ERK의 활성에는 거의 영향을 미치지 않는 것으로 보아 시금치 에탄올 추출물은 c-FOS의 활성, 비활성형 전체를 감소시킴으로 파골세포 분화를 감소시키는 것으로 확인되었다.

현토단(玄兎丹)의 RAW 264.7 대식 세포에서의 항염증 효과에 관한 연구 (The study of anti-inflammatory effect of Hyeonto-dan extract in RAW 264.7 macrophage)

  • 김마룡;강옥화;공룡;서윤수;주전;김상아;김은수;신민아;이영섭;권동렬
    • 대한본초학회지
    • /
    • 제32권2호
    • /
    • pp.77-85
    • /
    • 2017
  • Objectives : This study aimed to investigate the unknown mechanisms behind the anti- inflammatory activity of Hyeonto-dan(HT) 70% ethanol extract on LPS-stimulated RAW 264.7 cells. Methods : Cells were treated with Hyeonto-dan 1 h prior to addition of 200 ng/mL of LPS. Cell viability was measured by the MTS assay. Nitric oxide levels were determined by the Griess assay. $PGE_2$ were measured using EIA kit. Pro-inflammatory cytokine production was measured by the enzyme-linked immunosorbent assay (ELISA). The expression of COX-2, iNOS, and MAPKs was investigated by Western blot, qRT-PCR. $NF-{\kappa}B$/p65 localization and interaction of the TLR-4 receptor with LPS was examined by immunofluorescence assays. Results : Hyeonto-dan had no cytotoxicity at the measured concentration. Hyeonto-dan inhibited NO production and pro-inflammatory cytokines such as IL-6, $TNF-{\alpha}$, and PGE2 as well as the protein and mRNA expression of iNOS and COX-2. Moreover, Hyeonto-dan inhibited the interaction between LPS and TLR-4 in murine macrophages. It suppressed phosphorylation of extracellular signal-regulated kinase (ERK 1/2), c-jun N-terminal kinase (JNK 1/2) and p38. Finally, it inhibited translocation of $NF-{\kappa}B$ in response to competitive LPS. Conclusions : Based on the results of this study, Hyeonto-dan inhibited the binding of TLR-4 receptor to LPS and inhibited the phosphorylation of extracellular signaling pathway MAPKs. These inhibitory effects are thought that the amount of $NF-{\kappa}B$ delivered to the nucleus was decreased and the inflammatory reaction was prevented by decreasing the production of LPS-induced $PGE_2$, NO, IL-6 and $TNF-{\alpha}$.

생강나무 추출물의 암전이 억제효과 (Effect of Lindera obtusiloba extract on cancer metastasis)

  • 윤혁;이용재;서현원;박경재;고하늘;차동석;권진;전훈;김강산
    • 대한한방내과학회지
    • /
    • 제33권4호
    • /
    • pp.405-417
    • /
    • 2012
  • 목 적 : 본 연구에서는 생강나무 메탄올 추출물이 암전이 억제에 미치는 영향을 조사하고자 하였다. 방 법 : 생강나무 추출물의 암전이 억제능을 확인하기 위해서 B16F10 흑색종 세포를 이용하여 금속단백분해효소의 활성 및 발현을 측정하였으며, 암세포의 이동능이나 침윤능도 조사하였다. 폐전이 동물모델에서 생강나무 추출물이 미치는 영향을 조사하여 활성을 최종적으로 확인하였다. 결 과 : 1. 생강나무 추출물은 B16F10 흑색종 세포에서 뚜렷한 금속단백분해효소의 효소활성 및 발현 억제효과를 보였으며 이는 NF-${\kappa}B$의 활성 억제에서 기인한 것임을 확인하였다. 2. 흑색종 세포의 이동이나 침윤 역시 생강나무 추출물 투여에 의해 현저히 감소하였다. 3. 폐전이 동물 모델에서도 생강나무 추출물에 의해 폐로 전이되 집락의 수가 감소하였다. 결 론 : 이상의 결과로 생강나무 추출물은 뛰어난 암전이 억제효과가 있는 것을 확인할 수 있었으며, 전이성 암치료에 있어서 유용하게 사용될 수 있을 것으로 사료된다.

Inhibitory effect of Ssanghwa-tang on bone loss in ovariectomized rats

  • Shim, Ki-Shuk;Lee, Ji-Hye;Ma, Choong-Je;Lee, Yoon-Hee;Choi, Sung-Up;Lee, Jae-Hoon;Ma, Jin-Yeul
    • Animal cells and systems
    • /
    • 제14권4호
    • /
    • pp.283-289
    • /
    • 2010
  • Ssanghwa-tang (SHT) is a traditional Korean herbal medicine widely prescribed to decrease fatigue following an illness. The purpose of this study was to investigate the effects of SHT on osteoclast differentiation in vitro, and on bone loss in ovariectomized (OVX) rats in vivo. SHT significantly reduced the receptor activator for the nuclear factor ${\kappa}B$ (NF-${\kappa}B$) ligand (RANKL)-induced tartrate-resistant acid phosphatase (TRAP) activity, and multinucleated osteoclast formation in RAW264.7 cells without affecting cell viability. In addition, SHT significantly attenuated RANKL-induced mRNA expression levels of c-Src and cathepsin K. To examine the in vivo effect of SHT on OVX-induced bone loss in OVX rats, we administered SHT (0.6 g/kg BID) orally to OVX rats for 12 weeks. SHT administration significantly blocked OVX-induced decrease of femoral bone mineral density (BMD) and femoral trabeculae in OVX rats. In conclusion, these results suggest that SHT treatment effectively prevents OVX-induced bone loss, and this effect may result from its inhibitory effect on osteoclast differentiation.