• Title/Summary/Keyword: NF-${\kappa}B$/MAPK

Search Result 293, Processing Time 0.033 seconds

Acacia Honey Exerts Anti-Inflammatory Activity through Inhibition of NF-κB and MAPK/ATF2 Signaling Pathway in LPS-Stimulated RAW264.7 Cells

  • Kim, Ha Na;Park, Su Bin;Kim, Jeong Dong;Jeong, Hyung Jin;Jeong, Jin Boo
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 추계학술대회
    • /
    • pp.97-97
    • /
    • 2018
  • Honey used as conventional medicine has various pharmacological properties. In the honey and anti-inflammatory effect, Gelam honey and Manuka honey has been reported to exert anti-inflammatory activity. However, the anti-inflammatory effect and potential mechanisms of acacia honey (AH) are not well understood. In this study, we investigated anti-inflammatory activity and mechanism of action of AH in LPS-stimulated RAW264.7 cells. AH attenuated NO production through inhibition of iNOS expression in LPS-stimulated RAW264.7 cells. AH also decreased the expressions of $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$ as pro-inflammatory cytokines, and MCP-1 expression as a pro-inflammatory chemokine. In the elucidation of the molecular mechanisms, AH decreased LPS-mediated $I{\kappa}B-{\alpha}$ degradation and subsequent nuclear accumulation of p65, which resulted in the inhibition of $NF-{\kappa}B$ activation in RAW264.7 cells. AH dose-dependently suppressed LPS-mediated phosphorylation of ERK1/2 and p38 in RAW264.7 cells. In addition, AH significantly inhibited ATF2 phosphorylation and nuclear accumulation of ATF2 in LPS-stimulated RAW264.7 cells. These results suggest that AH has an anti-inflammatory effect, inhibiting the production of pro-inflammatory mediators such as NO, iNOS, $TNF-{\alpha}$, IL-6, $IL-1{\beta}$ and MCP-1 via interruption of the $NF-{\kappa}B$ and MAPK/ATF2 signaling pathways.

  • PDF

Tat-ATOX1 inhibits inflammatory responses via regulation of MAPK and NF-κB pathways

  • Kim, Dae Won;Shin, Min Jea;Choi, Yeon Joo;Kwon, Hyun Jung;Lee, Sung Ho;Lee, Sunghou;Park, Jinseu;Han, Kyu Hyung;Eum, Won Sik;Choi, Soo Young
    • BMB Reports
    • /
    • 제51권12호
    • /
    • pp.654-659
    • /
    • 2018
  • Antioxidant 1 (ATOX1) protein has been reported to exhibit various protective functions, including antioxidant and chaperone. However, the effects of ATOX1 on the inflammatory response has not been fully elucidated. Thus, we prepared cell permeable Tat-ATOX1 and studied the effects on lipopolysaccharide (LPS)- and 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced inflammation. Experimental results showed that transduced Tat-ATOX1 protein significantly suppressed LPS-induced intracellular reactive oxygen species (ROS). Also, Tat-ATOX1 protein markedly inhibited LPS- and TPA-induced inflammatory responses by decreasing cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) and further inhibited phosphorylation of mitogen activated protein kinases (MAPKs; JNK, ERK and p38) and the nuclear factor-kappaB ($NF-{\kappa}B$) signaling pathway. These results indicate that the Tat-ATOX1 protein has a pivotal role in inflammation via inhibition of inflammatory responses, suggesting Tat-ATOX1 protein may offer a therapeutic strategy for inflammation.

Anti-Inflammatory Activity of Acacia Honey through Inhibition of NF-κB and MAPK/ATF2 Signaling Pathway in LPS-Stimulated RAW264.7 Cells

  • Kim, Ha Na;Son, Kun Ho;Jeong, Hyung Jin;Park, Su Bin;Kim, Jeong Dong;Jeong, Jin Boo
    • 한국자원식물학회지
    • /
    • 제31권6호
    • /
    • pp.612-621
    • /
    • 2018
  • Honey used as conventional medicine has various pharmacological properties. In the honey and anti-inflammatory effect, Gelam honey and Manuka honey has been reported to exert anti-inflammatory activity. However, the anti-inflammatory effect and potential mechanisms of acacia honey (AH) are not well understood. In this study, we investigated anti-inflammatory activity and mechanism of action of AH in LPS-stimulated RAW264.7 cells. AH attenuated NO production through inhibition of iNOS expression in LPS-stimulated RAW264.7 cells. AH also decreased the expressions of $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$ as pro-inflammatory cytokines, and MCP-1 expression as a pro-inflammatory chemokine. In the elucidation of the molecular mechanisms, AH decreased LPS-mediated $I{\kappa}B$-${\alpha}$ degradation and subsequent nuclear accumulation of p65, which resulted in the inhibition of $NF-{\kappa}B$ activation in RAW264.7 cells. AH dose-dependently suppressed LPS-mediated phosphorylation of ERK1/2 and p38 in RAW264.7 cells. In addition, AH significantly inhibited ATF2 phosphorylation and nuclear accumulation of ATF2 in LPS-stimulated RAW264.7 cells. These results suggest that AH has an anti-inflammatory effect, inhibiting the production of pro-inflammatory mediators such as NO, iNOS, $TNF-{\alpha}$, IL-6, $IL-1{\beta}$ and MCP-1 via interruption of the $NF-{\kappa}B$ and MAPK/ATF2 signaling pathways.

LPS 자극 RAW 264.7 대식세포에 있어서 아로니아 열매 열수 추출물의 항염증 효과 (Anti-Inflammatory Effect of Hot Water Extract of Aronia Fruits in LPS-Stimulated RAW 264.7 Macrophages)

  • 양혜;오광훈;유영춘
    • 한국식품영양과학회지
    • /
    • 제44권1호
    • /
    • pp.7-13
    • /
    • 2015
  • 본 연구에서는 아로니아 열매 추출물(AF-H)의 항염증 활성을 조사하기 위하여 LPS 자극에 의해 유도된 RAW 264.7 macrophage의 염증반응에서 AF-H의 염증매개인자 및 염증성 사이토카인 분비 억제활성과 이에 관련된 세포 내 작용기전 해석을 수행하였다. LPS($1{\mu}g/mL$)로 RAW 264.7 세포를 24시간 자극하는 염증모델에서 세포독성을 나타내지 않는 안전한 농도의 AF-H($0{\sim}500{\mu}g/mL$)를 LPS 처리 12시간 전에 처리하여 NO 및 PGE2의 분비 억제활성을 측정하였다. 그 결과 AF-H 처리에 의해 NO와 PGE2의 생성이 처리 농도에 의존하여 유의하게 억제되었으며, 이들 염증매개인자의 생합성 효소인 iNOS 및 COX-2의 세포 내 발현도 현저하게 억제되는 것으로 관찰되었다. 또한 AF-H의 처리에 의해 염증성 사이토카인인 $TNF-{\alpha}$와 IL-6의 분비도 유의하게 억제되는 것으로 확인하였다. 이러한 AF-H에 의한 항염증 활성의 세포 내 기전을 해석하기 위하여 LPS 자극에 의해 유도되는 MAPK와 $NF-{\kappa}B$ 전사인자의 활성화에 대한 억제 효과를 조사하였다. 그 결과 AF-H는 MAPK의 인산화에는 별다른 영향을 미치지 않고 $NF-{\kappa}B$의 활성화($I{\kappa}B$ 인산화)를 효과적으로 억제하는 것으로 확인되었다. 한편 LPS에 의한 in vivo 패혈증 모델에서 AF-H에 의한 패혈증 억제활성을 측정한 결과 비록 통계학적으로 유의하지는 않으나 AF-H 투여에 의해 생존율과 50% 사망률의 연장 효과가 관찰되었다. 이들 결과를 종합해 보면 아로니아 열매 열수추출물은 $NF-{\kappa}B$의 활성화 억제를 통해 NO, PGE2, $TNF-{\alpha}$ 및 IL-6 등의 염증매개인자와 사이토카인의 생성을 억제하는 항염증 활성을 지니는 것으로 확인되었다.

Sophora Flavescens Suppresses Degranulation and Pro-inflammatory Cytokines Production through the Inhibition of NF-${\kappa}B$ (p65) Activation in the RBL-2H3 cells

  • Lyu, Ji-Hyo;Park, Sang-Eun;Hong, Su-Hyun;Kim, Dong-Kyu;Ko, Woo-Shin;Hong, Sang-Hoon
    • 동의생리병리학회지
    • /
    • 제23권1호
    • /
    • pp.206-213
    • /
    • 2009
  • 본 연구는 RBL-2H3 세포에서 고삼의 NF-${\kappa}B$ (p65) 활성 억제를 통한 과립감소와 전염증성 시토카인 억제 효과에 관한 것으로 주요 내용은 다음과 같다. 본 연구에서는 PMA와 A23187로 유발된 흰쥐 백혈병(RBL-2H3) 세포에서 고삼의 항알레르기 효과에 대하여 알아보았다. 고삼은 투여량에 따라 $\beta$-hexosaminidase의 방출과 TNF-$\alpha$, IL-4, COX-2 등의 생성과 발현을 억제하였다. 실험결과 고삼은 $NF-{\kappa}B$ (p65)의 조절을 통하여 항알레르기 효과를 나타내었는데 이는 $I{\kappa}B-{\alpha}$ 저해의 억제와 항염증 시토카인 발현 억제와도 관계가 있다는 내용이다.

LPS로 유발한 대식세포의 염증반응과 마우스 귀 부종에 대한 구멍갈파래 에탄올 추출물의 항염증 효과 (Anti-Inflammatory Effects of Ethanol Extracts from Ulva pertusa Kjellman on LPS-induced RAW 264.7 Cells and Mouse Model)

  • 김민지;김민주;김꽃봉우리;박선희;최현덕;박소영;장미란;임무혁;안동현
    • 한국미생물·생명공학회지
    • /
    • 제44권4호
    • /
    • pp.479-487
    • /
    • 2016
  • 대식세포에 대하여 구멍갈파래 에탄올 추출물의 독성결과를 확인해본 결과 독성은 나타나지 않았으며, LPS에 의하여 유도되는 NO와 염증성 cytokine의 분비량은 구멍갈파래 에탄올 추출물의 농도 의존적으로 감소함을 확인하였다. 또한 구멍갈파래 에탄올 추출물로 인해 $NF-{\kappa}B$ 및 MAPKs의 신호전달을 억제함으로써 염증매개성 물질의 발현 억제에 효과가 있는지 알아본 결과, 구멍갈파래 에탄올 추출물은 각각 iNOS, COX-2, $NF-{\kappa}B$ 및 MAPKs의 활성을 효과적으로 억제하였고 그에 따른 염증 매개인자들의 생성도 효과적으로 억제되는 것을 확인하였다. 마지막으로 추출물이 마우스 귀부종에 미치는 영향을 살펴본 결과, 대조군의 경피와 진피의 두께에 비해 추출물 처리군의 조직 두께가 상대적으로 현저히 줄어들었으며 귀 조직에 침윤된 mast cell의 감소에도 추출물이 그 효과를 현저하게 나타냄을 확인하였다. 본 연구결과들을 종합해 보았을 때, 구멍갈파래의 에탄올 추출물은 항염증 활성을 가지는 새로운 천연물질로 이용 가능하여 고부가 가치 제품 개발이 가능한 천연 소재로 판단된다.

Protective Effects of Standardized Siegesbeckia glabrescens Extract and Its Active Compound Kirenol against UVB-Induced Photoaging through Inhibition of MAPK/NF-κB Pathways

  • Kim, Jongwook;Kim, Mi-Bo;Yun, Jun Gon;Hwang, Jae-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권2호
    • /
    • pp.242-250
    • /
    • 2017
  • Anti-photoaging effects of standardized Siegesbeckia glabrescens extract (SGE) and its major active compound kirenol were investigated using Hs68 human dermal fibroblasts and hairless mice, respectively. UVB-irradiated hairless mice that received oral SGE (600 mg/kg/day) showed reduced wrinkle formation and skinfold thickness compared with the UVB-irradiated control. Furthermore, SGE treatment increased the mRNA levels of collagen synthesis genes (COL1A1, COL3A1, COL4A1, and COL7A1) and activated antioxidant enzyme (catalase), while suppressing matrix metalloproteinase (MMP-2, -3, -9, and -13) expression. In Hs68 fibroblasts, kirenol also significantly suppressed MMP expression while increasing the expression of COL1A1, COL3A1, and COL7A1. Collectively, our data demonstrate that both SGE and kirenol attenuated UVB-induced photoaging in hairless mice and fibroblasts through inhibition of the mitogen-activated protein kinases and nuclear factor kappa B pathways, suggesting that SGE has potential to serve as a natural anti-photoaging nutraceutical.

Effects of Korean Radish on DSS-Induced Ulcerative Colitis in Mice

  • Kim, Hyun-Kyoung
    • International Journal of Advanced Culture Technology
    • /
    • 제6권4호
    • /
    • pp.97-108
    • /
    • 2018
  • The present study aimed to investigate the comparative evaluation of pharmacological efficacy between sulfasalazine alone and combination with herbal medicine on dextran sodium sulfate (DSS)-induced UC in mice. Balb/c mice received 5% DSS in drinking water for 7 days to induce colitis. Animals were divided into five groups (n = 9): group I-normal group, group II-DSS control group, group III-DSS + sulfasalazine (30 mg/kg), group IV-DSS + sulfasalazine (60 mg/kg), group V-DSS + sulfasalazine (30 mg/kg) + Radish Extract mixture (30 mg /kg) (SRE). DSS-treated mice developed symptoms similar to those of human UC, such as severe bloody diarrhea and weight loss. SRE supplementation, as well as sulfasalazine, suppressed colonic length and mucosal inflammatory infiltration. In addition, SRE treatment significantly reduced the expression of pro-inflammatory signaling moleculesthrough suppression both mitogen-activated protein kinases(MAPK) and nuclear factor-kappa B ($NF-{\kappa}B$) signaling pathways, and prevented the apoptosis of colon. Moreover, SRE administration significantly led to the up-regulation of anti-oxidant enzyme including SOD and Catalase. This is the first report that Radish extract mixture combined with sulfasalazine protects against experimental UC via the inhibition of both inflammation and apoptosis, very similar to the standard-of-care sulfasalazine.

HMGB1 Promotes the Synthesis of Pro-IL-1β and Pro-IL-18 by Activation of p38 MAPK and NF-κB Through Receptors for Advanced Glycation End-products in Macrophages

  • He, Qiang;You, Hong;Li, Xin-Min;Liu, Tian-Hui;Wang, Ping;Wang, Bao-En
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권4호
    • /
    • pp.1365-1370
    • /
    • 2012
  • The high mobility group box-1 (HMGB1) protein and NALP3 inflammasome have been identified to play important roles in inflammation and cancer pathogenesis, but the relationships between the two and cancer remain unclear. The current study investigated the relationship between HMGB1 and the NALP3 inflammasome in THP-1 macrophages. HMGB1 was found unable to activate the NALP3 inflammasome and failed to induce the release of the IL-$1{\beta}$ and IL-18 in THP-1 macrophages. HMGB1 was also found significantly enhanced the activity of ATP to induce IL-$1{\beta}$ and IL-18 by the induction of increased expression of pro-IL-$1{\beta}$ and pro-IL-18. This process was dependent on activation of RAGE, MAPK p38 and NF-${\kappa}B$ signaling pathway. These results demonstrate that HMGB1 promotes the synthesis of pro-IL-$1{\beta}$ and pro-IL-18 in THP-1 macrophages by the activation of p38 MAPK and NF-${\kappa}B$ through RAGE. HMGB1 likely plays an important role in the first step of the release of the IL-$1{\beta}$ and IL-18, preparing for other cytokines to induce excessive release of IL-$1{\beta}$ and IL-18 which promote inflammation and cancer progression.

UHPLC/TOFHRMS analysis and anti-inflammatory effect of leaf extracts from Zizyphus jujuba in LPS-stimulated RAW264.7 cells

  • Hyun Ji Eo;Sun-Young Lee;Gwang Hun Park
    • Journal of Plant Biotechnology
    • /
    • 제50권
    • /
    • pp.27-33
    • /
    • 2023
  • Zizyphus jujube is a plant in the buckthorn family (Rhamnaceae) that has been the subject of research into antibacterial, antifungal and anti-inflammatory properties of its fruit and seed. However, few studies have investigated its leaves. In this study, the anti-inflammatory activity of ZJL (an extract of Z. jujube leaf) was evaluated to verify its potential as an anti-inflammatory agent and SARS-CoV-2 medicine, using nitric oxide (NO) assay, RT-PCR, SDSPAGE, Western blotting, and UHPLC/TOFHRMS analysis. We found that ZJL suppresed pro-inflammatory mediators such as NO, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and tumor necrosis factor α (TNF-α) in lipopolysaccharide (LPS)-induced RAW264.7 cells. ZJL acted by inhibiting NF-KB and MAPK signaling pathway activity. We also confirmed that ZJL contains a phenol compound and flavonoids with anti-inflammatory activity such as trehalose, maleate, epigallocatechin, hyperoside, catechin, 3-O-coumaroylquinic acid, rhoifolin, gossypin, kaempferol 3-neohesperidoside, rutin, myricitrin, guaiaverin, quercitrin, quercetin, ursolic acid, and pheophorbide a. These findings suggest that ZJL may have great potential for the development of anti-inflammatory drugs and vaccines via inhibition of NF-κB and MAPK signaling in LPS-induced RAW264.7 cells.