• Title/Summary/Keyword: NF-${\kappa}B$/AP-1 activation

Search Result 70, Processing Time 0.025 seconds

TAK1-dependent Activation of AP-1 and c-Jun N-terminal Kinase by Receptor Activator of NF-κB

  • Lee, Soo-Woong;Han, Sang-In;Kim, Hong-Hee;Lee, Zang-Hee
    • BMB Reports
    • /
    • v.35 no.4
    • /
    • pp.371-376
    • /
    • 2002
  • The receptor activator of nuclear factor kappa B (RANK) is a member of the tumor necrosis factor (TNF) receptor superfamily. It plays a critical role in osteoclast differentiaion, lymph node organogenesis, and mammary gland development. The stimulation of RANK causes the activation of transcription factors NF-${\kappa}B$ and activator protein 1 (AP1), and the mitogen activated protein kinase (MAPK) c-Jun N-terminal kinase (JNK). In the signal transduction of RANK, the recruitment of the adaptor molecules, TNF receptor-associated factors (TRAFs), is and initial cytoplasmic event. Recently, the association of the MAPK kinase kinase, transforming growth factor-$\beta$-activated kinase 1 (TAK1), with TRAF6 was shown to mediate the IL-1 signaling to NF-${\kappa}B$ and JNK. We investigated whether or not TAK1 plays a role in RANK signaling. A dominant-negative form of TAK1 was discovered to abolish the RANK-induced activation of AP1 and JNK. The AP1 activation by TRAF2, TRAF5, and TRAF6 was also greatly suppressed by the dominant-negative TAK1. the inhibitory effect of the TAK1 mutant on RANK-and TRAF-induced NF-${\kappa}B$ activation was also observed, but less efficiently. Our findings indicate that TAK1 is involved in the MAPK cascade and NF-${\kappa}B$ pathway that is activated by RANK.

Curcumin Suppresses Activation of NF-κB and AP-1 Induced by Phorbol Ester in Cultured Human Promyelocytic Leukemia Cells

  • Han, Seong-Su;Keum, Young-Sam;Seo, Hyo-Joung;Surh, Young-Joon
    • BMB Reports
    • /
    • v.35 no.3
    • /
    • pp.337-342
    • /
    • 2002
  • Many components that are derived from medicinal or dietary plants possess potential chemopreventive properties. Curcumin, a yellow coloring agent from turmeric (Curcuma longa Linn, Zingiberaceae), possesses strong antimutagenic and anticarcinogenic activities. In this study, we have found that curcumin inhibits the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced nuclear factor ${\kappa}B$ (NF-${\kappa}B$) activation by preventing the degradation of the inhibitory protein $I{\kappa}B{\alpha}$ and the subsequent translocation of the p65 subunit in cultured human promyelocytic leukemia (HL-60) cells. Alternatively, curcumin repressed the TPA-induced activation of NF-${\kappa}B$ through direct interruption of the binding of NF-${\kappa}B$ to its consensus DNA sequences. Likewise, the TPA-induced DNA binding of the activator protein-1 (AP-1) was inhibited by curcumin pretreatment.

Anti-Inflammatory Effect of Fermented Artemisia princeps Pamp in Mice

  • Joh, Eun-Ha;Trinh, Hien-Trung;Han, Myung-Joo;Kim, Dong-Hyun
    • Biomolecules & Therapeutics
    • /
    • v.18 no.3
    • /
    • pp.308-315
    • /
    • 2010
  • Essential oil-excluded Artemisia princeps Pamp var Ssajuarissuk (AP) was fermented with Lactobacillus brevis K-1, which was isolated from cabbage Kimchi, and the anti-inflammatory effects of AP and fermented AP (FAP) on lipopolysaccharide (LPS)-induced inflammatory response in peritoneal macrophages were investigated. AP and FAP inhibited LPS-induced TNF-$\alpha$, IL-$1{\beta}$, COX-2, iNOS and COX-2 expression, as well as NF-${\kappa}B$ activation. AP and FAP also reduced ear thickness, inflammatory cytokine (TNF-$\alpha$, IL-$1{\beta}$ and IL-6) expression and NF-${\kappa}B$ activation with 12-O-tetradecanoylphorbol-13-acetate (TPA) induced dermatitis in mice. Furthermore, AP and FAP also reduced exudate volume, cell number, protein amount, inflammatory cytokines (TNF-$\alpha$, IL-$1{\beta}$ and IL-6) expression and NF-${\kappa}B$ activation in carrageenan-induced air pouch inflammation in mice. The inhibitory effects of FAP were more potent than those of non-fermented AP. Based on these findings, we propose that FAP can improve inflammatory diseases, such as dermatitis, by inhibiting the NF-${\kappa}B$ pathway.

Inhibitory Effect of Naringenin on MMP-9 Activity and Expression in HT-1080 Cells (Naringenin이 NF-$\kappa$B, AP-1 억제를 통한 MMP-9 활성 및 발현 억제 효과)

  • Chae, Soo-Chul;Kho, Eun-Gyeong;Seo, Eun-Sun;Ryu, Geun-Chang;Na, Myung-Suk;Kim, In-Suk;Lee, Jong-Bin
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.1
    • /
    • pp.58-65
    • /
    • 2009
  • The chemopreventive effects of naringenin derived from citrus on tumor migration and the possible mechanisms involved in this protection were investigated in HT-1080 tumor cells. In this study, we found that naringenin reduced phorbol 12-myristate 13-acetate (PMA)-enhanced matrix metalloproteinases (MMP)-9 activation in a dose-dependant manner and further inhibited HT-1080 cell migration. In addition, naringenin suppressed PMA-enhanced expression of MMP-9 protein, mRNA and transcription activity levels through suppression of nuclear factor $\kappa$B (NF-$\kappa$B) activation and activator protein-1 (AP-1) translocation without changing tissue inhibitor of metalloproteinase (TIMP)-1 level. Therefore, our results suggested that the inhibitory effects of naringenin on MMP-9 activation, relation of tumor migration in vitro possibly involve mechanisms related to its ability to suppress PMA-enhanced MMP-9 gene and protein expression through NF-$\kappa$B activation and AP-1 translocation. Overall, naringenin may be a valuable anti-invasive drug candidate for cancer therapy.

PDTC Inhibits $TNF-{\alpha}-Induced$ Apoptosis in MC3T3E1 Cells

  • Chae, Han-Jung;Bae, Jee-Hyeon;Chae, Soo-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.4
    • /
    • pp.199-205
    • /
    • 2003
  • Osteoblasts are affected by TNF-${\alpha}$ overproduction by immune cells during inflammation. It has been suggested that functional $NF-{\kappa}B$ sites are involved in TNF-${\alpha}$-induced bone resorption. Thus, we explored the effect of pyrrolidine dithiocarbamate (PDTC), which potently blocks the activation of nuclear factor $(NF-{\kappa}B)$, on the induction of TNF-${\alpha}$-induced activation of JNK/SAPK, AP-1, cytochrome c, caspase and apoptosis in MC3T3E1 osteoblasts. Pretreatment of the cells with PDTC blocked TNF-${\alpha}$-induced $NF-{\kappa}B$ activation. TNF-${\alpha}$-induced activation of AP-1, another nuclear transcription factor, was suppressed by PDTC. The activation of c-Jun N-terminal kinase, implicated in the regulation of AP-1, was also down regulated by PDTC. TNF-${\alpha}$-induced apoptosis, release of cytochrome c and subsequent activation of caspase-3 were abolished by PDTC. TNF-${\alpha}$-induced apoptosis was partially blocked by Ac-DEVD-CHO, a caspase-3 inhibitor, suggesting that caspase-3 is involved in TNF-${\alpha}$-mediated signaling through $NF-{\kappa}B$ in MC3T3E1 osteoblasts. Thus, these results demonstrate that PDTC, has an inhibitory effect on TNF-${\alpha}$-mediated activation of JNK/SAPK, AP-1, cytochrome c release and subsequent caspase-3, leading to the inhibition of apoptosis. Our study may contribute to the treatment of TNF-${\alpha}$-associated immune and inflammatory diseases such as rheumatoid arthritis and periodontal diseases.

Suppressive effects of Lithospermum erythrorhizon extracts on lipopolysaccharide-induced activation of AP-1 and NF-κB via mitogen-activated protein kinase pathways in mouse macrophage cells

  • Han, Kyu-Yeon;Kwon, Taek-Hwan;Lee, Tae-Hoon;Lee, Sung-Joon;Kim, Sung-Hoon;Kim, Ji-Young
    • BMB Reports
    • /
    • v.41 no.4
    • /
    • pp.328-333
    • /
    • 2008
  • A variety of anti-inflammatory agents have been shown to exert chemopreventive activity via targeting of transcription factors such as NF-${\kappa}B$ and AP-1. Lithospermum erythrorhizon (LE) has long been used in traditional oriental medicine. In this study, we demonstrated the inhibitory effects of LE extracts on lipopolysaccharide (LPS)-stimulated production of inflammatory cytokines. As an underlying mechanism of inhibition, LE extracts reduced LPS-induced transactivation of AP-1 as well as NF-${\kappa}B$ in mouse macrophage cells. Electrophoretic mobility shift assays indicated that LE extracts inhibited the DNA binding activities of AP-1 and NF-${\kappa}B$. In addition, phosphorylation of $I{\kappa}B-{\alpha}$ protein was suppressed by LE extracts. Moreover, LE extracts inhibited c-Jun N-terminal kinase and extracellular signal-regulated signaling pathways. Our results suggest that the anti-inflammatory activity of LE extracts may be mediated by the inhibition of signal transduction pathways that normally lead to the activation of AP-1and NF-${\kappa}B$. These inhibitory effects may be useful for chemoprevention of cancer or other chronic inflammatory diseases.

The cancer/testis antigen CAGE induces MMP-2 through the activation of NF-κB and AP-1

  • Kim, Young-Mi;Jeoung, Doo-Il
    • BMB Reports
    • /
    • v.42 no.11
    • /
    • pp.758-763
    • /
    • 2009
  • Cancer-associated antigen (CAGE) induces the expression of matrix metalloproteinase-2 (MMP-2) by activating Akt, which in turn interacts with inhibitory kappa kinase $\beta$ ($I{\kappa}K{\beta}$) to activate nuclear factor ${\kappa}B$ (NF-${\kappa}B$). Akt and p38 mitogen activated protein kinase (p38 MAPK) are necessary for CAGE-mediated induction of the AP-1 subunit JunB, whereas extracellular regulated kinase (ERK) is necessary for the induction of fos-related antigen-1 (Fra-1). Induction of MMP-2 by CAGE requires activator of protein-1 (AP-1) to be bound. Specific binding of JunB to MMP-2 promoter sequences was shown by chromatin immunoprecipitation (ChIP) analysis.

Effects of Chiyangtang on Helicobacter pylori-induced increase of cytokines gene expression (Helicobacter pylori 감염에 의한 Cytokines 유전자 발현에 대한 치양탕(治瘍湯)의 효과)

  • Lee, Hyung-Ju;Won, Jin-Hee;Moon, Goo;Moon, Seok-Jae;Park, Dong-Won
    • The Journal of Internal Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.99-110
    • /
    • 1999
  • Effects of Chiyangtang(CYT) on H. pylori-induced increase of interleukin 8 and interleukin 1 gene expression was studied in Kato Ⅲ cell line, a human stomach epithelial cell line. Treatment of H. pylori to the cell culture signifant!y increased IL-8 and IL-1 mRNA synthesis. When CYT was added along with H. pylori, the increase of IL-8 and IL-1 mRNA synthesis was blocked. Activation of transcription factor $NF-{\kappa}B$ and AP-1 which were known to important in IL-8 and IL-1 gene expression was also studied using chloramphenicol acetyltransferase(CAT) assay. Treatment of H. pylori increased activation of $NF-{\kappa}B$ and AP-l and CYT effectively protected the activation. Electrophoretic mobility shift assay suggested that CYT effectively inhibited DNA binding of $NF-{\kappa}B$ and AP-l to their cognate site. These results suggested that CYT could prevent stomach diseases through the down regulation of IL -8 and IL-l gene expression which might be mediated by the inhibition of $NF-{\kappa}B$ and AP-1 activities and their binding to DNA.

  • PDF

Luteolin and luteolin-7-O-glucoside inhibit lipopolysaccharide-induced inflammatory responses through modulation of NF-${\kappa}B$/AP-1/PI3K-Akt signaling cascades in RAW 264.7 cells

  • Park, Chung Mu;Song, Young-Sun
    • Nutrition Research and Practice
    • /
    • v.7 no.6
    • /
    • pp.423-429
    • /
    • 2013
  • Luteolin is a flavonoid found in abundance in celery, green pepper, and dandelions. Previous studies have shown that luteolin is an anti-inflammatory and anti-oxidative agent. In this study, the anti-inflammatory capacity of luteolin and one of its glycosidic forms, luteolin-7-O-glucoside, were compared and their molecular mechanisms of action were analyzed. In lipopolysaccharide (LPS)-activated RAW 264.7 cells, luteolin more potently inhibited the production of nitric oxide (NO) and prostaglandin E2 as well as the expression of their corresponding enzymes (inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) than luteolin-7-O-glucoside. The molecular mechanisms underlying these effects were investigated to determine whether the inflammatory response was related to the transcription factors, nuclear factor (NF)-${\kappa}B$ and activator protein (AP)-1, or their upstream signaling molecules, mitogen-activated protein kinases (MAPKs) and phosphoinositide 3-kinase (PI3K). Luteolin attenuated the activation of both transcription factors, NF-${\kappa}B$ and AP-1, while luteolin-7-O-glucoside only impeded NF-${\kappa}B$ activation. However, both flavonoids inhibited Akt phosphorylation in a dose-dependent manner. Consequently, luteolin more potently ameliorated LPS-induced inflammation than luteolin-7-O-glucoside, which might be attributed to the differentially activated NF-${\kappa}B$/AP-1/PI3K-Akt pathway in RAW 264.7 cells.

Anti-inflammatory effects of proanthocyanidin-rich red rice extract via suppression of MAPK, AP-1 and NF-κB pathways in Raw 264.7 macrophages

  • Limtrakul, Pornngarm;Yodkeeree, Supachai;Pitchakarn, Pornsiri;Punfa, Wanisa
    • Nutrition Research and Practice
    • /
    • v.10 no.3
    • /
    • pp.251-258
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Several pharmacological properties of red rice extract have been reported including anti-oxidant, anti-tumor, and reduced cancer cell invasion. This study was conducted to evaluate the anti-inflammatory effects of red rice extract on the production of inflammatory mediators in lipopolysaccharide (LPS)-induced Raw 264.7 macrophages. MATERIALS/METHODS: Pro-inflammatory cytokines including tumor necrosis factor-${\alpha}$ and interleukin-6 were determined by ELISA and cyclooxygenase-2 and inducible nitric oxide synthase expression was evaluated using western blot analysis. In addition, the signaling pathway controlling the inflammatory cascade such as nuclear factor kappa B ($NF-{\kappa}B$), activator proteins-1 (AP-1), and mitogen-activated protein kinase (MAPK) was determined. RESULTS: Our results showed that red rice polar extract fraction (RR-P), but not non-polar extract fraction, inhibited interleukin-6, tumor necrosis factor-${\alpha}$, and nitric oxide production in LPS-induced Raw 264.7 cells. RR-P also reduced the expression of inflammatory enzymes, inducible nitric oxide synthase, and cyclooxygenase-2. In addition, activation of AP-1 and $NF-{\kappa}B$ transcription factor in the nucleus was abrogated by RR-P. RR-P inhibited the phosphorylation of extracellular signaling-regulated kinase 1/2, c-Jun NH2-terminal kinase, and p38 MAPK signaling responsible for the expression of inflammatory mediators in LPS-stimulated Raw 264.7 cells. Based on chemical analysis, high amounts of proanthocyanidin and catechins were detected in the RR-P fraction. However, only proanthocyanidin reduced $NF-{\kappa}B$ and AP-1 activation in LPS-activated Raw 264.7 cells. CONCLUSION: These observations suggest that the anti-inflammatory properties of RR-P may stem from the inhibition of pro-inflammatory mediators via suppression of the AP-1, $NF-{\kappa}B$, and MAPKs pathways.