• 제목/요약/키워드: NF$\kappa$B

검색결과 1,683건 처리시간 0.038초

Bee venom의 세포자멸사를 통한 전립선 암세포의 성장 및 LNCaP의 이종이식에 미치는 영향 (Bee Venom Inhibits Prostate Cancer Growth in LNCaP Xenografts via Apoptosis)

  • 양창열;송호섭
    • 대한약침학회지
    • /
    • 제13권1호
    • /
    • pp.15-35
    • /
    • 2010
  • 연구목적 : 이 연구는 봉약침의 봉독이 NF-${\kappa}B$ 활성억제와 안드로겐 수용체 조절 단백질 및 세포자멸사 조절 단백질의 발현을 통하여 세포자멸사를 유도하고, 전립선 암세포를 이식한 쥐에서의 세포자멸사 유도 효과를 확인함으로써, 봉약침의 봉독이 생체 내에서도 세포자멸사를 유도하여 전립선암에 효과를 나타냄을 확인하고자 하였다. 실험방법 : 세포자멸사의 관찰에는 DAPI, TUNEL staining assay를 시행하였으며, 세포자멸사 조절 단백질의 변동 관찰에는 western blot analysis를 시행하였고, 세포자멸사와 연관된 NF-${\kappa}B$의 활성 변화를 관찰하기 위해 EMSA를 시행하였다. 결과 : 1. DAPI, TUNEL staining assay 결과 봉독 및 melittin을 처리한 LNCaP 세포 모두에서 세포자멸사 유도율이 유의한 증가를 나타내었다. 2. LNCaP 세포에 봉독이나 melittin을 처리한 결과, 안드로겐 수용체 조절 단백질 중 p-Akt, COX-2, calpain은 봉독과 melittin 모두에서 유의한 감소를 나타내었고, Akt는 melittin에서 유의한 감소를 나타냈으며, 봉독에서 증가하는 경향을 보였고, MMP-9은 증가하였다. 3. 생체 내에서의 봉독의 항암효과를 확인하기 위해 전립선암세포가 이식된 쥐에 봉독을 처리한 후 암세포의 부피와 무게, 쥐의 체중을 측정한 결과, 봉독을 처리한 군에서 암 세포 부피비율 및 무게는 감소하였고, 쥐의 체중은 증가하였다. 4. 전립선암세포가 이식된 쥐에 봉독을 처리한 결과, NF-${\kappa}B$ 활성에서 유의한 감소를 나타내었다. 5. 전립선암세포가 이식된 쥐에 봉독을 처리한 결과, 세포자멸사 조절 단백질 중 Bax/Bcl-2, p53, caspase-3, caspase-9, calpain은 유의한 증가를, COX-2는 유의한 감소를 나타냈으며, MMP-9는 증가를 나타내었다. 결론 : 이상의 결과는 봉독이 시험관 내에서 뿐만 아니라 생체 내에서도 NF-${\kappa}B$의 활성을 억제하고 안드로겐 수용체 조절 단백질 및 세포자멸사 조절 단백질의 조절을 통하여 인간 전립선암 세포주인 LNCaP의 세포자멸사를 유도함으로써 전립선암 세포 증식억제 효과 및 호르몬 비의존적인 전립선암으로의 전이를 지연시키는 경향이 있을 것으로 사료되고, 봉독이 전립선암의 예방과 치료에 효과적으로 활용될 수 있을 것으로 기대된다.

Pyrrolidine dithiocarbamate-induced activation of ERK and increased expression of c-Fos in mouse embryonic stem cells

  • Kim, Young-Eun;Park, Jeong-A;Nam, Ki-Hoan;Kwon, Hyung-Joo;Lee, Young-Hee
    • BMB Reports
    • /
    • 제42권3호
    • /
    • pp.148-153
    • /
    • 2009
  • Pyrrolidine dithiocarbamate (PDTC) is a stable anti-oxidant or pro-oxidant, depending on the situation, and it is widely used to inhibit the activation of NF-${\kappa}B$. We recently reported that PDTC activates the MIP-2 gene in a NF-${\kappa}B$-independent and c-Jun-dependent manner in macrophage cells. In this work, we found that PDTC activates signal transduction pathways in mouse ES cells. Among the three different mitogen-activated protein kinase (MAPK) pathways, including the extracellular-signal-regulated kinase (ERK), p38 MAP kinase, and stress-activated protein kinase (SAPK)/Jun N-terminal kinase (JNK) pathways, only the ERK pathway was significantly activated in mouse ES cells after stimulation with PDTC. Additionally, we observed a synergistic activation of ERK and induction of c-Fos after stimulation with PDTC in the presence of mouse embryonic fibroblast (MEF) conditioned medium. In contrast, another NF-${\kappa}B$ inhibitor, BMS-345541, did not activate the MAP kinase pathways or induce expression of c-Fos. These results suggest that changes in the presence of the NF-${\kappa}B$ inhibitor PDTC should be carefully considered when it used with mouse ES cells.

Helicobacter pylori 감염에 의한 Cytokines 유전자 발현에 대한 치양탕(治瘍湯)의 효과 (Effects of Chiyangtang on Helicobacter pylori-induced increase of cytokines gene expression)

  • 이형주;원진희;문구;문석재;박동원
    • 대한한방내과학회지
    • /
    • 제20권1호
    • /
    • pp.99-110
    • /
    • 1999
  • Effects of Chiyangtang(CYT) on H. pylori-induced increase of interleukin 8 and interleukin 1 gene expression was studied in Kato Ⅲ cell line, a human stomach epithelial cell line. Treatment of H. pylori to the cell culture signifant!y increased IL-8 and IL-1 mRNA synthesis. When CYT was added along with H. pylori, the increase of IL-8 and IL-1 mRNA synthesis was blocked. Activation of transcription factor $NF-{\kappa}B$ and AP-1 which were known to important in IL-8 and IL-1 gene expression was also studied using chloramphenicol acetyltransferase(CAT) assay. Treatment of H. pylori increased activation of $NF-{\kappa}B$ and AP-l and CYT effectively protected the activation. Electrophoretic mobility shift assay suggested that CYT effectively inhibited DNA binding of $NF-{\kappa}B$ and AP-l to their cognate site. These results suggested that CYT could prevent stomach diseases through the down regulation of IL -8 and IL-l gene expression which might be mediated by the inhibition of $NF-{\kappa}B$ and AP-1 activities and their binding to DNA.

  • PDF

Sesquiterpene Derivatives Isolated from Cyperus rotundus L. Inhibit Inflammatory Signaling Mediated by NF-${\kappa}B$

  • Khan, Salman;Choi, Ran-Joo;Lee, Dong-Ung;Kim, Yeong-Shik
    • Natural Product Sciences
    • /
    • 제17권3호
    • /
    • pp.250-255
    • /
    • 2011
  • The immune system is finely balanced by the activities of pro-inflammatory and anti-inflammatory mediators or cytokines. Unregulated activities of these mediators can lead to the development of various inflammatory diseases. A variety of safe and effective anti-inflammatory agents are available with many more drugs under development. Of the natural compounds, the sesquiterpenes (nootkatone, ${\alpha}$-cyperone, valencene and ${\alpha}$-selinene) isolated from C. rotundus L. have received much attention because of their potential antiinflammatory effects. However, limited studies have been reported regarding the influence of sesquiterpene structure on anti-inflammatory activity. In the present study, the anti-inflammatory potential of four structurally divergent sesquiterpenes was evaluated in lipopolysaccaride (LPS)-stimulated RAW 264.7 cells, murine macrophages. Among the four sesquiterpenes, ${\alpha}$-cyperone and nootkatone, showed stronger anti-inflammatory and a potent NF-${\kappa}B$ inhibitory effect on LPS-stimulated RAW 264.7 cells. Molecular analysis revealed that various inflammatory enzymes (iNOS and COX-2) were reduced significantly and this correlated with downregulation of the NF-${\kappa}B$ signaling pathway. Additionally, electrophoretic mobility shift assays (EMSA) elucidated that nootkatone and ${\alpha}$-cyperone dramatically suppressed LPS-induced NF-${\kappa}B$-DNA binding activity using 32Plabeled NF-${\kappa}B$ probe. Hence, our data suggest that ${\alpha}$-cyperone and nootkatone are potential therapeutic agents for inflammatory diseases.

Scutellarein Reduces Inflammatory Responses by Inhibiting Src Kinase Activity

  • Sung, Nak Yoon;Kim, Mi-Yeon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권5호
    • /
    • pp.441-449
    • /
    • 2015
  • Flavonoids are plant pigments that have been demonstrated to exert various pharmacological effects including anti-cancer, anti-diabetic, anti-atherosclerotic, anti-bacterial, and anti-inflammatory activities. However, the molecular mechanisms in terms of exact target proteins of flavonoids are not fully elucidated yet. In this study, we aimed to evaluate the anti-inflammatory mechanism of scutellarein (SCT), a flavonoid isolated from Erigeron breviscapus, Clerodendrum phlomidis and Oroxylum indicum Vent that have been traditionally used to treat various inflammatory diseases in China and Brazil. For this purpose, a nitric oxide (NO) assay, polymerase chain reaction (PCR), nuclear fractionation, immunoblot analysis, a kinase assay, and an overexpression strategy were employed. Scutellarein significantly inhibited NO production in a dose-dependent manner and reduced the mRNA expression levels of inducible NO synthase (iNOS) and tumor necrosis factor (TNF)-${\alpha}$ in lipopolysaccharide (LPS)-activated RAW264.7 cells. In addition, SCT also dampened nuclear factor (NF)-${\kappa}B$-driven expression of a luciferase reporter gene upon transfection of a TIR-domain-containing adapter-inducing interferon-${\beta}$ (TRIF) construct into Human embryonic kidney 293 (HEK 293) cells; similarly, NF-${\kappa}B$ nuclear translocation was inhibited by SCT. Moreover, the phosphorylation levels of various upstream signaling enzymes involved in NF-${\kappa}B$ activation were decreased by SCT treatment in LPS-treated RAW264.7 cells. Finally, SCT strongly inhibited Src kinase activity and also inhibited the autophosphorylation of overexpressed Src. Therefore, our data suggest that SCT can block the inflammatory response by directly inhibiting Src kinase activity linked to NF-${\kappa}B$ activation.

Mycobacterial Heparin-binding Hemagglutinin Antigen Activates Inflammatory Responses through PI3-K/Akt, NF-${\kappa}B$, and MAPK Pathways

  • Kim, Ki-Hye;Yang, Chul-Su;Shin, A-Rum;Jeon, So-Ra;Park, Jeong-Kyu;Kim, Hwa-Jung;Jo, Eun-Kyeong
    • IMMUNE NETWORK
    • /
    • 제11권2호
    • /
    • pp.123-133
    • /
    • 2011
  • Background: Mycobacterium tuberculosis (Mtb) heparin binding hemagglutinin (HBHA) is an Ag known to evoke effective host immune responses during tuberculosis infection. However, the molecular basis of the host immune response to HBHA has not been fully characterized. In this study, we examined the molecular mechanisms by which HBHA can induce the expression of proinflammatory cytokines in macrophages. Methods: HBHA-induced mRNA and protein levels of proinflammatory cytokines were determined in bone marrow-derived macrophages (BMDMs) using RT-PCR and ELISA analysis. The roles of intracellular signaling pathways for NF-${\kappa}B$, PI3-K/Akt, and MAPKs were investigated in macrophage proinflammatory responses after stimulation with HBHA. Results: HBHA robustly activated the expression of mRNA and protein of both TNF-${\alpha}$ and IL-6, and induced phosphorylation of NF-${\kappa}B$, Akt, and MAPKs in BMDMs. Both TNF-${\alpha}$ and IL-6 production by HBHA was regulated by the NF-${\kappa}B$, PI3-K, and MAPK pathways. Furthermore, PI3-K activity was required for the HBHA-induced activation of ERK1/2 and p38 MAPK, but not JNK, pathways. Conclusion: These data suggest that mycobacterial HBHA significantly induces proinflammatory responses through crosstalk between the PI3-K and MAPK pathways in macrophages.

Tumor Necrosis Factor ${\alpha}$ up-regulates the Expression of beta2 Adrenergic Receptor via NF-${\kappa}B$-dependent Pathway in Osteoblasts

  • Baek, Kyunghwa;Kang, Jiho;Hwang, Hyo Rin;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • 제38권3호
    • /
    • pp.121-126
    • /
    • 2013
  • Tumor necrosis factor alpha ($TNF{\alpha}$) is a multifunctional inflammatory cytokine that regulates various cellular and biological processes. Increased levels of $TNF{\alpha}$ have been implicated in a number of human diseases including diabetes and arthritis. Sympathetic nervous system stimulation via the beta2-adrenergic receptor (${\beta}2AR$) in osteoblasts suppresses osteogenic activity. We previously reported that $TNF{\alpha}$ upregulates ${\beta}2AR$ expression in murine osteoblastic cells and that this modulation is associated with $TNF{\alpha}$ inhibition of osteoblast differentiation. In our present study, we explored whether $TNF{\alpha}$ induces ${\beta}2AR$ expression in human osteoblasts and then identified the downstream signaling pathway. Our results indicated that ${\beta}2AR$ expression was increased in Saos-2 and C2C12 cells by $TNF{\alpha}$ treatment, and that this increase was blocked by the inhibition of NF-${\kappa}B$ activation. Chromatin immunoprecipitation and luciferase reporter assay results indicated that NF-${\kappa}B$ directly binds to its cognate elements on the ${\beta}2AR$ promoter and thereby stimulates ${\beta}2AR$ expression. These findings suggest that the activation of $TNF{\alpha}$ signaling in osteoblastic cells leads to an upregulation of ${\beta}2AR$ and also that $TNF{\alpha}$ induces ${\beta}2AR$ expression in an NF-${\kappa}B$-dependent manner.

Curcumin은 ovalbumin에 의해서 유도된 inducible nitric oxide synthase 억제 (Curcumin Inhibits Ovalbumin-Induced Inducible Nitric Oxide Synthase Expression)

  • 김지수;안희진;신화정;구교정;엄상훈;이청호;민인순;윤형선
    • 한국식품과학회지
    • /
    • 제44권4호
    • /
    • pp.498-501
    • /
    • 2012
  • 본 연구에서 curcumin이 계란 알러젠 중의 하나인 OVA에 의해서 유도된 NF-${\kappa}B$ 활성화 및 iNOS 발현에 어떤 영향을 미치는지 알아보았다. Curcumin은 OVA에 의해서 유도된 NF-${\kappa}B$ 활성화와 iNOS 발현을 억제시켰다. 이러한 결과는 curcumin이 계란 알러젠인 OVA에 의해서 유도된 NF-${\kappa}B$의 활성화와 iNOS의 발현을 억제하여 염증반응이나 알러지와 같은 만성적인 질병들을 조절할 수 있다는 것을 보여주는 중요한 결과라 사료된다. 이러한 연구는 추후 알러지 작용기전 규명 및 알러지 치료제 개발에 중요한 역할을 할 것으로 기대한다.

Screening of immunoactive ingredients in frequently consumed food in Korea

  • Gil, Na-Young;Lee, Sang-Myeong;Mun, Ji-Young;Yeo, Soo-Hwan;Kim, So-Young
    • Journal of Biomedical and Translational Research
    • /
    • 제19권4호
    • /
    • pp.92-102
    • /
    • 2018
  • The objectives of this study were to find out the plant to enhance immune activity among 42 kinds of foods frequently consumed by the Korean elderly consisting of 5 food groups and 5 wild plants. Each sample was assessed the immunoactive effect by measuring $NF-{\kappa}B/AP1$ gene expression, nitric oxide and cytokine production in $RAW-Blue^{TM}$ cell. Soybean sprouts of 47 plants showed the highest $NF-{\kappa}B/AP1$ gene expression at the level of $1.13{\pm}0.03$ (O.D. 650 nm) and Soritae, sweet potato, banana, apple, garlic, crown daisy, cabbage and Ailanthus altissima also had high activity of $NF-{\kappa}B/AP1$ gene in $RAW-Blue^{TM}$ cell stimulated by LPS. NO production of Ailanthus altissima was significantly higher than that of other plants and 16 plants of glutinous sorghum, black rice, Seoritae, Heuktae, sweet potato, banana, apple, garlic, mungbean sprouts, spinach, crown daisy, young pumpkin, cabbage, soybean sprouts, Actinidia arguta and Aster scaber were the next best activity. The above results selected 17 out of 47 plant samples. Moreover, soybean sprouts was significantly shown to increase $TNF-{\alpha}$ ($1,509.55{\pm}1.38pg/mL$) and $IL-1{\beta}$ ($54.56{\pm}1.08pg/mL$) cytokines in comparison with RAW-Blue cell stimulated by LPS. According to the results of in vitro evaluation, the ethanol extract of soybean sprout increased the production of immune-enhancing cytokines by proliferation of macrophages. In addition, $NF-{\kappa}B$ transcription factor activity and NO production ability were excellent, and it was selected as a material having excellent immunological activity.

Tussilagone suppressed the production and gene expression of MUC5AC mucin via regulating nuclear factor-kappa B signaling pathway in airway epithelial cells

  • Choi, Byung-Soo;Kim, Yu-jin;Yoon, Yong Pill;Lee, Hyun Jae;Lee, Choong Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권6호
    • /
    • pp.671-677
    • /
    • 2018
  • In the present study, we investigated whether tussilagone, a natural product derived from Tussilago farfara, significantly affects the production and gene expression of airway MUC5AC mucin. Confluent NCI-H292 cells were pretreated with tussilagone for 30 min and then stimulated with EGF (epidermal growth factor) or PMA (phorbol 12-myristate 13-acetate) for 24 h or the indicated periods. The MUC5AC mucin gene expression was measured by RT-PCR. Production of MUC5AC mucin protein was measured by ELISA. To elucidate the action mechanism of tussilagone, effect of tussilagone on PMA-induced $NF-{\kappa}B$ signaling pathway was investigated by western blot analysis. Tussilagone significantly inhibited the production of MUC5AC mucin protein and down-regulated the expression of MUC5AC mucin gene, induced by EGF or PMA. Tussilagone inhibited PMA-induced activation (phosphorylation) of inhibitory kappa B kinase (IKK), and thus phosphorylation and degradation of inhibitory kappa Ba ($I{\kappa}B{\alpha}$). Tussilagone inhibited PMA-induced phosphorylation and nuclear translocation of nuclear factor kappa B ($NF-{\kappa}B$) p65. This, in turn, led to the down-regulation of MUC5AC protein production in NCI-H292 cells. These results suggest that tussilagone can regulate the production and gene expression of mucin by acting on airway epithelial cells through regulation of $NF-{\kappa}B$ signaling pathway.