• Title/Summary/Keyword: NF$\kappa$B

Search Result 1,677, Processing Time 0.028 seconds

Ferment Red Ginseng Suppresses the Expression of Matrix Metalloproteinases in UVA-irradiated Human Dermal Fibroblast Cells (발효홍삼의 인간진피섬유모세포에서 UVA로 유도한 염증 및 기질단백분해효소 발현 억제 효능)

  • Lee, Keun-Hyeun;Jeong, Seung-Il;Lee, Chang-Hyun;Shin, Sang Woo;Jeong, Han-Sol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.31 no.2
    • /
    • pp.105-110
    • /
    • 2017
  • Prolonged exposure to solar ultraviolet A (UVA) radiation has been known to cause premature skin aging (photo-aging). UVA radiation generates ROS thereby induce degenerative changes of skin such as degradation of dermal collagen, elastic fibers. Matrix metalloproteinases (MMPs), the proteolytic enzymes have been implicated as a major player in the development of UVA-induced photo-aging. Many studies have been conducted to block the harmful effects of UV radiation on the skin. Recently, we are interested in the availability of fermented red ginseng (FRG) as natural matrix metalloproteinases inhibitors (MMPIs). The efficacy difference between red ginseng and FRG has been compared. Both RG and FRG have no cytotoxic effects below the concentration of $300{\mu}g/ml$. Human dermal fibroblasts (HDFs) were pretreated with FRG or RG for 24h, followed by irradiation of UVA. Then, we measured the intracellular ROS production and the expression of MMP, $IL-1{\beta}$ at the mRNA level. We also examined the intracellular localization of $NF-{\kappa}B$ and MMP-9 on the FRG or RG treated and UVA-irradiated HDFs. FRG decreased the intracellular ROS production elicited by UVA. In addition, FRG decreased the mRNA expression of MMP-3, MMP-9, and $IL-1{\beta}$ more efficiently than RG. Furthermore, FRG suppressed the nuclear localization of $NF-{\kappa}B$, and the expression of MMP-9. Taken together, our results suggest that FRG is promising agents to prevent UVA-induced photo-aging by suppressing MMP expression and inflammation.

Bee Venom Decreases LPS-Induced Inflammatory Responses in Bovine Mammary Epithelial Cells

  • Jeong, Chang Hee;Cheng, Wei Nee;Bae, Hyojin;Lee, Kyung Woo;Han, Sang Mi;Petriello, Michael C.;Lee, Hong Gu;Seo, Han Geuk;Han, Sung Gu
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.10
    • /
    • pp.1827-1836
    • /
    • 2017
  • The world dairy industry has long been challenged by bovine mastitis, an inflammatory disease, which causes economic loss due to decreased milk production and quality. Attempts have been made to prevent or treat this disease with multiple approaches, primarily through increased abuse of antibiotics, but effective natural solutions remain elusive. Bee venom (BV) contains a variety of peptides (e.g., melittin) and shows multiple bioactivities, including prevention of inflammation. Thus, in the current study, it was hypothesized that BV can reduce inflammation in bovine mammary epithelial cells (MAC-T). To examine the hypothesis, cells were treated with LPS ($1{\mu}g/ml$) to induce an inflammatory response and the anti-inflammatory effects of BV (2.5 and $5{\mu}g/ml$) were investigated. The cellular mechanisms of BV against LPS-induced inflammation were also investigated. Results showed that BV can attenuate expression of an inflammatory protein, COX2, and pro-inflammatory cytokines such as IL-6 and TNF-${\alpha}$. Activation of NF-${\kappa}B$, an inflammatory transcription factor, was significantly downregulated by BV in cells treated with LPS, through dephosphorylation of ERK1/2. Moreover, pretreatment of cells with BV attenuated LPS-induced production of intracellular reactive oxygen species (e.g., superoxide anion). These results support our hypothesis that BV can decrease LPS-induced inflammatory responses in bovine mammary epithelial cells through inhibition of oxidative stress, NF-${\kappa}B$, ERK1/2, and COX-2 signaling.

Long Term Effect of High Glucose and Phosphate Levels on the OPG/RANK/RANKL/TRAIL System in the Progression of Vascular Calcification in rat Aortic Smooth Muscle Cells

  • Kang, Yang Ho;Jin, Jung Sook;Son, Seok Man
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.2
    • /
    • pp.111-118
    • /
    • 2015
  • Osteoprotegerin (OPG), receptor activator of NF-${\kappa}B$ ligand (RANKL)/receptor activator of NF-${\kappa}B$ (RANK) axis, and TNF-related apoptosis-inducing ligand (TRAIL) participate in vascular calcification process including atherosclerosis, but their contributions under high glucose (HG) and phosphate (HP) condition for a long-term period (more than 2 weeks) have not been fully determined. In this study, we evaluated the effects of HG and HP levels over 2 or 4 weeks on the progression of vascular calcification in rat vascular smooth muscle cells (VSMCs). Calcium deposition in VSMCs was increased in medium containing HG (30 mmol/L D-glucose) with ${\beta}$-glycerophosphate (${\beta}$-GP, 12 mmol/L) after 2 weeks and increased further after 4 weeks. OPG mRNA and protein expressions were unchanged in HG group with or without ${\beta}$-GP after 2 weeks. However, after 4 weeks, OPG mRNA and protein expressions were significantly lower in HG group with ${\beta}$-GP. No significant expression changes were observed in RANKL, RANK, or TRAIL during the experiment. After 4 weeks of treatment in HG group containing ${\beta}$-GP and rhBMP-7, an inhibitor of vascular calcification, OPG expressions were maintained. Furthermore, mRNA expression of alkaline phosphatase (ALP), a marker of vascular mineralization, was lower in the presence of rhBMP-7. These results suggest that low OPG levels after long term HG and phosphate stimulation might reduce the binding of OPG to RANKL and TRAIL, and these changes could increase osteo-inductive VSMC differentiation, especially vascular mineralization reflected by increased ALP activity during vascular calcification.

The Anti-Inflammatory Effect of Lonicera Japonica-Glycyrrhiza Uralensis Decoction on Ulcerative Colitis Induced by DSS in Mice (항염증조절을 통한 금은화-감초 복합 추출물의 DSS 유도 궤양성 대장염 완화 효과)

  • Lee, Yeon Woo;Ahn, Sang Hyun;Kim, Ho Hyun;Kim, Kibong
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.32 no.3
    • /
    • pp.16-25
    • /
    • 2018
  • Objectives The purpose of this study is to investigate the anti-inflammatory effect of Lonicera Japonica-Glycyrrhiza Uralensis decoction extracts (LGE) on ulcerative colitis in children and adolescents. Methods Colitis was induced by DSS (Dextran Sulfate Sodium) in C57BL/6 mice. The sample mice were divided into group of four. The mice in the control group were not inflammation-induced. The control group was composed of untreated ulcerative colitis elicited mice. The mice in the experimental group were administered with Pentasa and another experimental group mice were treated with LGE after colitis elicitation. The effects on ulcerative colitis were evaluated by the morphological changes of colonic mucosa, decrease in the effect of pro-inflammatory cytokines ($TNF-{\alpha}$ and $NF-{\kappa}B$) and inflammatory cytokines (iNOS and COX-2) in the mucosa. Results LGE showed protective effects in DSS induced ulcerative colitis. LGE inhibited shortening of colon length and relieved the hemorrhagic erosion in colonic mucosa. LGE decreased pro-inflammatory cytokines ($TNF-{\alpha}$ and $NF-{\kappa}B$) and inflammatory cytokines (iNOS and COX-2). According to the GC/MS analysis, N-methyl pyrrolidone (NMP) was identified. Conclusions The result shows the clinical efficacy of LGE and demonstrates possible treatment options for ulcerative colitis. Further investigations for biological activity and chemical analysis of LGE will be needed.

Valproic Acid Induces Transcriptional Activation of Human GD3 Synthase (hST8Sia I) in SK-N-BE(2)-C Human Neuroblastoma Cells

  • Kwon, Haw-Young;Dae, Hyun-Mi;Song, Na-Ri;Kim, Kyoung-Sook;Kim, Cheorl-Ho;Lee, Young-Choon
    • Molecules and Cells
    • /
    • v.27 no.1
    • /
    • pp.113-118
    • /
    • 2009
  • In this study, we have shown the transcriptional regulation of the human GD3 synthase (hST8Sia I) induced by valproic acid (VPA) in human neuroblastoma SK-N-BE(2)-C cells. To elucidate the mechanism underlying the regulation of hST8Sia I gene expression in VPA-stimulated SK-N-BE(2)-C cells, we characterized the promoter region of the hST8Sia I gene. Functional analysis of the 5'-flanking region of the hST8Sia I gene by the transient expression method showed that the -1146 to -646 region, which contains putative binding sites for transcription factors c-Ets-1, CREB, AP-1 and NF-${\kappa}B$, functions as the VPA-inducible promoter of hST8Sia I in SK-N-BE(2)-C cells. Site-directed mutagenesis and electrophoretic mobility shift assay indicated that the NF-${\kappa}B$ binding site at -731 to -722 was crucial for the VPA-induced expression of hST8Sia I in SK-N-BE(2)-C cells. In addition, the transcriptional activity of hST8Sia I induced by VPA in SK-N-BE(2)-C cells was strongly inhibited by SP600125, which is a c-Jun N-terminal kinase (JNK) inhibitor, and $G{\ddot{O}}6976$, which is a protein kinase C (PKC) inhibitor, as determined by RT-PCR (reverse transcription-polymerase chain reaction) and luciferase assays. These results suggest that VPA markedly modulated transcriptional regulation of hST8Sia I gene expression through PKC/JNK signal pathways in SK-N-BE(2)-C cells.

Anti-inflammatory Effects of Resveratrol, (-)-Epigallocatechin-3-gallate and Curcumin by the Modulation of Toll-like Receptor Signaling Pathways (Toll-like receptors 신호전달체계 조절을 통한 resveratrol, (-)-epigallocatechin-3-gallate, curcumin의 항염증 효과)

  • Youn, Hyung-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.481-487
    • /
    • 2007
  • Toll-like receptors (TLRs) induce innate immune responses that are essential for host defenses against invading microbial pathogens, thus leading to the activation of adaptive immune responses. In general, TLRs have two major downstream signaling pathways: the MyD88- and TRIF-dependent pathways, which lead to the activation of $NF-{\kappa}B$ and IRF3. Numerous studies have demonstrated that certain phytochemicals possessing anti-inflammatory effects inhibit $NF-{\kappa}B$ activation induced by pro-inflammatory stimuli, including lipopolysaccharides and $TNF{\alpha}$. However, the direct molecular targets for such anti-inflammatory phytochemicals have not been fully identified. Identifying the direct targets of phytochemicals within the TLR pathways is important because the activation of TLRs by pro-inflammatory stimuli can induce inflammatory responses that are the key etiological conditions in the development of many chronic inflammatory diseases. In this paper we discuss the molecular targets of resveratrol, (-)-epigallocatechin-3-gallate (EGCG), and curcumin in the TLR signaling pathways. Resveratrol specifically inhibited the TRIF pathway in TLR3 and TLR4 signaling, by targetting TBK1 and RIP1 in the TRIF complex. Furthermore, EGCG suppressed the activation of IRF3 by targetting TBK1 in the TRIF-dependent signaling pathways. In contrast, the molecular target of curcumin within the TLR signaling pathways is the receptor itself, in addition to $IKK{\beta}$. Together, certain dietary phytochemicals can modulate TLR-derived signaling and inflammatory target gene expression, and in turn, alter susceptibility to microbial infection and chronic inflammatory diseases.

Changes in Ceramide in Stratum Corneum and Anti-inflamatory Effects of Sopungdojeok-tang on Atopic Dermatitis (소풍도적탕(消風導赤湯)이 아토피 피부염의 항염증효과와 각질층 ceramide변화에 미치는 영향)

  • Kang, Yoon-Ho;Kim, Sung-A
    • The Journal of Internal Korean Medicine
    • /
    • v.27 no.1
    • /
    • pp.72-83
    • /
    • 2006
  • Objective : This study was designed to identify lipid protection formation in stratum corneum and anti-inflammatory effects of Sopungdojeok-tang(SD) on atopic dermatitis(AD). Materials and Methods : In Vivo, SD extract was orally administered to BALB/c mice at $2.5m{\ell}/kg/day$ for 2 days after 5% sodium dodecyl sulfate evoked atopic dermatitis in abdominal skin. Morphological changes were observed by immunohistochemical stain using monoclonal antibodies(BrdU, ceramide, MIP-2, $NF-{\kappa}B$ p50, IL-4, and STAT6) and TUNEL method. In vitro, the alterations of IL-4 mRNA expression were detected by RT-PCT in SD extract treated EL4 cells after phorbol-12-myristate-13-acetate and 4-tert-Octylphenol induce Th2 skewed condition. Results : SD is used in Oriental Medicine for its potential curative for atopic dermatitis. In this study, we have investigated the anti-inflammatory and lipid lamella repair effects of SD were investigated. SD decreased the number of eosinophil in atopic dermatitis induced mice. In the histological properties, the hyperplasia, edema, infiltration of lymphocytes, damage of intercellular space of stratum corneum, BrdU positive reacted cells in stratum basal, and degranulated mast cells and capillaries in dermal papillae decreased in mice with SD. Treatment of SD also decreased MIP-2, STAT6 and IL-4 in dermal papillae. The IL-4 mRNA expression decreased in a dose-dependant manner in SD treated EL4 cells. In addition, decrease of $NF-{\kappa}B$ p50 and increase of apoptotic cells in dermis were observed in SD treated mice. These data suggest that SD may beneficial for atopic dermatitis. Conclusions : These data suggest that SD is beneficial in treatment of atopic dermatitis, and that SD provides lipid protection in stratum corneum and anti-inflammatory effects on atopic dermatitis.

  • PDF

The effect of Sagunja-tang on TNBS-induced Inflammatory Bowel Disease in Mouse (사군자탕(四君子湯)이 TNBS로 유발(誘發)된 생쥐의 염증성(炎症性) 장질환(腸疾患)에 미치는 영향(影響))

  • Hong, Sang-Sun;Ryu, Bong-Ha;Yoon, Seong-Woo;Kim, Jin-Sung
    • The Journal of Internal Korean Medicine
    • /
    • v.31 no.4
    • /
    • pp.731-751
    • /
    • 2010
  • Objectives : The present study aimed to find out the effect of Sagunja-tang on the prevention and treatment of inflammatory bowel disease using mice with TNBS-induced inflammatory bowel disease. Methods : Mice with TNBS-induced inflammatory bowel disease were medicated with Sagunja-tang, and the weight changes, colon length, lipid peroxidation, and myeloperoxidase activity were observed. Levels of the inflammatory markers interleukin (IL)-$1{\beta}$ and cyclooxygenase-2 (COX-2), its transcription factor activation, phospho-NF-${\kappa}$B (pp65), in the colon by enzyme-linked immunosorbent assay and immunoblot analysis were also measured. Finally, the activation of fecal bacterial enzyme, ${\beta}$-glucuronidase and degradation activation of fecal glycosaminoglycan (GAG) and hyaluronic acid were observed. Results : We found that oral administration of Sagunja-tang inhibited TNBS-induced colon shortening and also inhibited myeloperoxidase activity in the colon of mice as well as IL-$1{\beta}$ and COX-2 expression. Sagunja-tang also inhibited TNBSinduced lipid peroxidation and pp65 activation in the colon of mice. In addition, Sagunja-tang inhibited ${\beta}$-glucuronidase activation and fecal hyaluronic acid degradation activation. Conclusions : It is supposed that Sagunja-tang has a potential therapeutic effect on inflammatory bowel disease through the inhibition of both NF-${\kappa}$B activation and lipid peroxidation, and the improvement of intestinal conditions.

Anti-oxidative and anti-inflammatory effect of Do-Ki-Tang methanol extract in mouse macrophage cells (마우스 대식세포에서 도기탕 (導氣湯) 메탄올 추출물의 항산화 및 항염증 효과)

  • Kim, Dong-Wan;Yun, Hyun-Jeong;Heo, Jun-Young;Kim, Tae-Hoon;Cho, Hyun-Jin;Park, Sun-Dong
    • The Korea Journal of Herbology
    • /
    • v.25 no.4
    • /
    • pp.103-112
    • /
    • 2010
  • Objective : The aim of this study was to determine whether methanol extract of Do-Ki-Tang (DKT) inhibit free radical generation and production of nitrite an index of NO, $PGE_2$, iNOS, COX-2 and pro-inflammatory cytokines such as TNF-${\alpha}$, IL-$1{\beta}$, IL-6 and MCP-1 in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Methods : Cytotoxic activity of extract on RAW 264.7 cells was measured using 5-(3-caroboxymeth-oxyphenyl)-2H-tetra-zolium inner salt (MTS) assay. The expression level of inflammatory response-related proteins was confirmed by western blot. The production of proinflammatory cytokines was measured by ELISA. Results : Our results indicated that DKT scavenged DPPH radical and nitric oxide in vitro. Moreover, DKT significantly inhibited the LPS-induced NO, $PGE_2$ production and iNOS, COX-2 expression accompanied by an attenuation of TNF-${\alpha}$, IL-$1{\beta}$, IL-6 and MCP-1 formation in macrophages. Furthermore, DKT treatment also blocked LPS-induced intracellular ROS production and the activation of NF-${\kappa}B$ and MAPKs. Conclusion : Our data suggest that the anti-inflammatory effect of DKT is mediated through down-modulation of pro-inflammatory mediators and cytokines by blocking the signaling pathways of NF-${\kappa}B$ and MAPKs. These inhibitory effects by DKT represent a potential therapeutic approach to the treatment of inflammatory diseases.

Berberine Chloride Inhibits Receptor Activator of $NF-{\kappa}B$ Ligand-induced Osteoclastogenesis via Preventing ERK Activation

  • Cheon, Myeong-Sook;Kim, Myung-Hee;Lee, Su-Ui;Ryu, Shi-Yong;Kim, Ho-Kyoung;Min, Yong-Ki;Kim, Seong-Hwan
    • Korean Journal of Oriental Medicine
    • /
    • v.13 no.2 s.20
    • /
    • pp.157-164
    • /
    • 2007
  • An imbalance in bone remodeling that is caused by increased bone resorption over bone formation leads to most adult skeletal diseases including osteoporosis. Since the development of anti-resorptive agents from natural substances has recently gained more interest in the treatment of osteoporosis, we evaluated the effects of 222 natural compounds on receptor activator of $NF-{\kappa}B$ ligand (RANKL)-induced of tartrate-resistance acid phosphatase (TRAP) activity in RAW264.7 murine macrophage cell, and found that berberine chloride is one of compounds inhibiting RANKL-induced TRAP activity. Berberine chloride significantly inhibited the RANKL-induced TRAP activity and the formation of multinucleated osteoclasts in a dose-dependent manner. In addition, berberine chloride prevented the RANKL-induced mRNA expression of TRAP, matrix metalloproteinase 9 and c-Src, which have been known to be highly expressed in the process of osteoclastogenesis. Interestingly, berberine chloride prevented the RANKL-induced activation of extracellular signal-regulated kinase (ERK) which is one of mitogen-activated protein (MAP) kinases. In conclusion, berberine chloride could inhibit the osteoclastogenesis via preventing the activation of ERK/MAP kinase signaling pathway.

  • PDF