• 제목/요약/키워드: NEMA Phantom

검색결과 68건 처리시간 0.022초

PET/CT 3차원 영상 획득에서 부분용적효과 감소를 위한 재구성법의 최적화 (The Optimization of Reconstruction Method Reducing Partial Volume Effect in PET/CT 3D Image Acquisition)

  • 홍건철;박선명;곽인석;이혁;최춘기;석재동
    • 핵의학기술
    • /
    • 제14권1호
    • /
    • pp.13-17
    • /
    • 2010
  • PVE는 PET/CT 3D 영상 획득에서 발생되는 것으로 평가값이 저평가되어 영상의 정확도를 떨어뜨리는 현상이다. 특히 이는 병소의 크기가 작고 분해능이 저하될수록 더 큰 오차를 초래하여 검사 결과에 영향을 줄 수 있다. 본 연구는 PVE에 영향을 줄 수 있는 매개변수의 변화를 이용하여 최적의 영상 재구성법을 알아보고자 한다. GE Discovery STE16 장비에서 NEMA 2001 IEC phantom을 이용하여 각기 다른 크기의 구체(직경 37, 28, 22, 17, 13, 10 mm)에 $^{18}F$-FDG를 열소와 배후방사능비 4:1로 주입하여 10분간 영상을 획득하였다. 재구성은 반복재구성법(iterative reconstruction)을 사용하였으며, 반복 횟수(iteration) 2~50회, 부분집합 수(subset number) 1~56개로 변화를 주었다. 분석은 영상의 구체부분에 관심영역(ROI)을 설정하고 최대 표준섭취계수($SUV_{max}$)를 이용하여 백분율 차이(% difference)와 신호대잡음비(SNR)를 산출하였다. 반복 횟수 2, 6, 13, 30, 50회 변화를 준 10 mm 구체의 $SUV_{max}$는 2.32, 3.60, 3.88, 3.88, 3.90이고, SNR은 0.36, 0.49, 0.47, 0.43, 0.41이었으며, 백분율 차이는 58.9, 38.5, 34.8, 35.7, 35.4%로 측정되었다. 또한 6회로 고정한 반복 횟수에 2, 5, 8, 20, 56으로 부분집합 수를 변화시킨 평균 $SUV_{max}$는 10mm의 구체에서 1.46, 3.10, 3.10, 3.48, 3.78로 측정되었으며, SNR은 0.19, 0.30, 0.40, 0.48, 0.45로 나타났다. 또한 각 구체의 SNR의 합은 2.73, 3.38, 3.64, 3.63, 3.38로 측정되었다. 반복 횟수 6회부터 20회까지는 평균 백분율 차이($73{\pm}1%$)와 평균 SNR ($3.47{\pm}0.09$)은 비슷한 값을 나타내었으며, 20회 이상에서는 noise의 영향으로 SUV가 저평가되는 현상이 증가하였다. 또한 동일한 반복 횟수의 경우에 부분집합 값의 변화에서 SNR은 8회부터 20회가 높은 구간($3.63{\pm}0.002$)으로 나타났다. 따라서 작은 병소의 PVE를 줄이기 위해서는 재구성 시간을 고려하여 반복 횟수 6회, 부분집합 수 8~20회에서 PVE를 가장 저감할 수 있다.

  • PDF

I-131 SPECT/CT 검사의 에서 조준기 종류에 따른 영상 비교 평가 (Comparison of Collimator Choice on Image Quality of I-131 in SPECT/CT)

  • 김정열;김주연;남궁혁;강천구;김재삼
    • 핵의학기술
    • /
    • 제18권1호
    • /
    • pp.33-42
    • /
    • 2014
  • I-131의 주 에너지는 364 keV이고 이차적으로 637과 723 keV의 감마선을 방출한다. 이런 이유로 I-131 핵종을 이용한 검사에서는 일반적으로 고 에너지 조준기를 사용하고 있다. 반면 중 에너지 조준기는 과도한 격벽 투과의 영향 때문에 사용이 권고되지 않지만 I-131의 낮은 선량에 대해 계수율의 민감도를 향상시키기 위해 중 에너지 조준기를 사용하기도 한다. 이에 본 연구에서는 I-131 SPECT/CT에서 고 에너지와 중 에너지 조준기를 사용하여 조준기 선택에 대한 영상의 영향을 평가하고자 한다. I-131 점 선원과 NEMA NU-2 IQ phantom을 이용하여 Siemens symbia T16 SPECT/CT 장비로 중 에너지 조준기와 고 에너지 조준기를 사용하였다. 영상획득은 단일 에너지 창과 삼중 에너지 창으로 각각 적용하여 영상을 획득하였고, 재구성방법은 반복재구성 기법인 Flash 3D를 이용하여 CTAC, Scatter correction 적용 유무와 Iteration과 subset의 횟수를 변경하여 획득된 영상을 재구성하였다. 획득된 영상을 분석하여 두 조준기의 민감도와 대조도 그리고 잡음을 비교 평가하였다. 민감도는 중 에너지 조준기가 고 에너지 조준기보다 높게 나타났다(중 에너지 조준기: 188.18 cps/MBq, 고 에너지 조준기: 46.31 cps/MBq). 대조도는 삼중 에너지 창과 고 에너지 조준기를 사용하고 CTAC를 적용하여 16 subset 8 iteration을 적용한 재구성영상에서 가장 높은 대조도를 나타냈고(TCQI=190.64), 동일한 조건에서 중 에너지 조준기를 사용하였을 경우는 고 에너지 조준기에 비해 낮은 대조도를 나타냈다(TCQI=66.05). 잡음평가에서는 고 에너지 조준기보다 중 에너지 조준기에서 높게 나타났다 (P<0.001). 적절한 조준기의 선택은 영상의 질에 있어 중요한 사항이다. 본 연구를 통해 고 에너지 감마선을 방출하는 I-131 검사에서는 일반적으로 사용되고 있는 고 에너지 조준기를 사용하는 것이 영상의 질에 있어 가장 권고되는 바이다. 하지만 에너지 창, 매트릭스 크기, 반복 재구성 조건(subset과 iteration 수) 그리고 CTAC 및 scatter correction 여부등과 같은 조건들을 적절히 적용한다면 낮은 선량의 낮은 민감도를 갖는 조건에서는 중 에너지 조준기를 사용할 수 있을 것으로 사료된다.

  • PDF

Brain PET에서 Truncated Region에 의한 영상의 질 평가 (Evaluation of Image Quality Change by Truncated Region in Brain PET/CT)

  • 이홍재;도용호;김진의
    • 핵의학기술
    • /
    • 제19권2호
    • /
    • pp.68-73
    • /
    • 2015
  • PET/CT 검사 시 검사 부위에 따라 적절한 액세서리의 사용이 권고되고 있다. 그 중 brain 검사에서 사용되는 액세서리인 brain holder를 사용하지 않는 경우 CT의 small FOV에 의하여 whole pallet이 AC-CT에 cover되지 않으며, 이에 따른 truncated region에 따라 count loss가 발생된다. 본 논문에서는 brain holder를 사용하지 않았을 경우 발생하는 truncated region에 의한 image quality의 변화를 평가하고자 한다. Siemens사의 biograph truepoint40 장비와 $^{68}Ge$-uniform phantom을 사용하여 $^{68}Ge$ phantom을 pallet위에서 스캔하고 brain holder위에 위치하고 스캔 하였다. brain protocol을 적용하여 holder를 사용하지 않은 경우 pallet이 AC-CT의 FOV에 포함되지 않는 것을 알 수 있었다. 획득된 영상을 FBP, OSEM, TrueX recon method를 이용하여 iteration 4, subsets 21, gaussian 2 mm와 5 mm parameter를 적용하여 재구성 후 Window level : -4200, window width : 1000으로 설정하여 영상의 uniformity를 평가하였으며, vertical profile을 생성하여 count uniformity를 평가하였고, 마지막으로 5장과 20장의 slice를 summation하여 integral uniformity를 평가하였다. AC-CT영상을 통하여 holder를 사용하지 않는 경우 FOV내에 pallet이 모두 포함되지 않는 것을 알 수 있으며, 이에 따른 truncation에 의한 부정확한 attenuation factor가 나타났다 PET corrected sinogram 영상에서 holder를 사용하지 않은 경우 truncated region에 의한 defect 부위를 확인할 수 있으며, holder를 사용한 경우 uniform한 영상을 확인할 수 있었다. Window level : 4200, window width : 1000으로 설정 시 FBP, OSEM, TrueX recon 방법 모두에서 holder를 사용한 경우 uniform한 영상이 획득되었지만, holder를 사용하지 않은 경우 하단에 defect가 관찰되었다. Holder를 사용한 경우와 사용하지 않은 경우의 영상을 각 5장, 20장씩 summation하여 NEMA method에 따라 integral uniformity를 구하였으며, 5장 slice의 summation에서 holder를 사용하지 않은 경우 11.7% holder를 사용한 경우 7.2%로 나타났다. 20장 slice의 summation에서 holder를 사용하지 않은 경우 11.1% holder를 사용한 경우 76.7%로 나타났다. brain 검사 시 holder를 사용하지 않는 경우 truncated region에 따른 phantom 하단부의 count defect가 확인되었으며, 이는 환자 검사 시 occipital lobe의 count loss를 발생하게 되며 research 검사 시 검사 결과의 오차를 발생하게 됨으로 brain PET/CT 검사 시 정확한 검사결과를 위하여 검사 액세서리가 반드시 적용되어야 할 것이다.

  • PDF

전신 뼈 검사에서 Wide Beam Reconstruction 기법의 유용성 (Utility of Wide Beam Reconstruction in Whole Body Bone Scan)

  • 김정열;강청구;박민수;박훈희;임한상;김재삼;이창호
    • 핵의학기술
    • /
    • 제14권1호
    • /
    • pp.83-89
    • /
    • 2010
  • UltraSPECT사의 Wide Beam Reconstruction (WBR)은 노이즈(Noise)와 조준기의 광속 확산 함수 효과(Beam spread function effect)를 제거하고 환자와의 거리를 자동적으로 보상하여 높은 해상도와 대조도를 제공할 수 있어 영상 획득 시간을 짧게 할 수 있고 상당한 영상 질 향상에 도움을 준다고 보고되고 있다. 이에 본 연구에서는 핵의학 분야에서 가장 흔히 이용되는 전신 뼈 스캔에 대해 WBR의 임상적 적용에 대한 유용성을 알아보고자 한다. XpressBone (WBR)의 성능 실험을 위하여 NEMA에서 제공하는 방법에 의하여 선원(Line source)과 SPECT Phantom을 이용하여 공간 분해능을 측정 분석하였다. 실험방법은 선원의 총 계수치를 200 kcps에서 300 kcps로 변화시켜 측정하였으며, SPECT Phantom은 매트릭스 크기를 변화시켜 측정하여 공간분해능에 대한 분석을 하였다. 또한 2009년 1월부터 2009년 9월까지 본원을 내원하여 뼈 스캔을 시행 받은 환자 40명을 두 군으로 나누어 임상 연구를 시행하였다. 1군은 $^{99m}Tc$-HDP 740 MBq (20mCi)를 투여하고 검사속도(20, 30 cm/min)를 변화시켰고, 2군은 동일한 검사속도에서 $^{99m}Tc$-HDP의 투여량을 변화시켜 영상을 획득하여 Standard data와 WBR기법으로 재구성한 영상을 비교 평가하였다. 분석방법은 대퇴골체부에서 뼈와 연부조직간 섭취비(Femur to tissue ratio: FTR)를 측정한 정량적인 분석과 핵의학과 전문의와 5년 이상의 실무경험을 가진 방사선사가 육안적인 분석을 하여 비교 평가하였다. 성능 실험에서 선원을 사용하여 실험한 결과 Planar WBR data는 Standard data에 비하여 분해능이 약 10% 향상되었으며, WBR 반치폭(Full-Width at Half-Maximum)은 16% 향상되었다(Standard data 8.45, WBR data 7.09). SPECT Phantom에서는 약 50%의 분해능이 향상되었으며, WBR 반치폭은 50% 향상되었다(Standard data 3.52, WBR data 1.65). 임상 연구에서는 $^{99m}Tc$-HDP 투여량을 고정시키고 검사속도를 20cm/min과 30 cm/min로 변화시킨 1군에서 Standard data와 WBR data의 전신 뼈 스캔 전면 영상에서 뼈 대비 연부조직간 섭취비는 통계적으로 유의한 차이를 보이지 않았다 (p=0.07). 검사속도를 고정하고 $^{99m}Tc$-HDP 투여량을 변화시킨 2군에서는 Standard data와 WBR data간의 전신 뼈 스캔전면 영상에서는 통계적으로 유의한 차이를 보이지 않았다 (p=0.458). 영상의 육안적 분석에서도 두 군 간 유의한 차이를 보이지 않았다(p>0.05). NEMA test 결과 WBR 기법의 영상에서 분해능이 향상되는 결과를 나타내었고, 임상 실험에서는 기존 재구성 방법에서의 동일한 해상도를 가지면서도 검사시간을 단축시킬 수 있었으며 방사성의약품의 투여량도 줄일 수 있었다. 이미 알려진 바와 같이 WBR은 노이즈를 감소시켜 신호 대 잡음비를 증강시키는 새로운 영상 재구성 방법임을 확인 할 수 있으며 동일한 검사속도에서 투여량을 감소시킬 수 있어 수신자의 피폭선량 경감과 검사시간을 단축할 수 있었으며 임상 현장에서 유용하게 이용되리라 사료된다.

  • PDF

PET/CT 검사에서 SharpIR 재구성 방법의 평가 (Evaluation of SharpIR Reconstruction Method in PET/CT)

  • 김정열;강천구;박훈희;임한상;이창호
    • 핵의학기술
    • /
    • 제16권1호
    • /
    • pp.12-16
    • /
    • 2012
  • 서론: 종래의 PET 영상 재구성에 있어서 FBP 등에 비해 3차원 반복 재구성 방법이 일반적으로 대체하고 있으며, 이것은 검출기 기하학적 특성과 완벽한 3차원 산란 평가 및 저잡음 randoms 평가 등의 더 진보된 재구성 알고리즘을 제공하고 활용되고 있다. 최근에 SharpIR알고리즘은 3차원 반복 재구성 알고리즘으로 PET 검출기 응답 정보를 통합하여 PET 영상의 잡음을 효과적으로 감소시켜 대조도를 향상 시키기 위한 것으로 알려지고 있다. 본 연구에서는 새로운 반복 시스템 모델인 SharpIR에 대한 성능 평가와 임상에서의 적용 가능성에 대해 알아보고자 한다. 실험재료 및 방법: 검출기 응답에 대한 분해능을 측정하기 위해 유리관(내경 1.1 mm, 두께 0.2 mm)에 $^{18}F$-FDG (250 MBq/mL)을 주입하여 축 방향 시야의 중심과 축 방향으로 5, 10, 15, 20 cm만큼 떨어진 지점에서 획득하였고 VUE point HD와 VUE point HD-SharpIR로 재구성하여 각각의 영상에서 반치폭을 구하였다. 또한 영상품질평가로 image quality phantom (NU2-2001)을 이용하여, 여러 개의 각각 다른 반지름을 가지는 원형구에 cold (직경 28, 37 mm)와 ho (직경 10, 13, 17, 22 mm)부분을 나누어 배경잡음을 주고 영상의 대조도를 평가하였다. 획득된 영상은 VUE point HD와 VUE point HD-SharpIR로 재구성을 하였다. 임상실험에서는 전신검사를 시행받은 환자 중 병소가 있는 환자 10명을 대상으로 VUE point HD와 VUE point HD-SharpIR로 재구성하였다. 이때 iterations을 1~10까지 변경하여 병소 부위와 간 부위에 관심영역을 설정하여 대조도를 평가하였다. 결과: VUE point HD로 재구성한 영상에서는 시야 중심으로부터 축방향 거리 증가와 함께 반치폭이 함께 증가하였지만 VUE point HD-SharpIR로 재구성한 영상에서는 거리가 증가하여도 일정한 반치폭을 나타냈다. 대조도는 팬텀 실험과 임상 실험에서 VUE point HD-SharpIR이 VUE point HD보다 대조도의 향상을 나타냈다. 결론: 검출기 시스템 응답에 대한 더 많은 정보를 포함시킴으로써 SharpIR 알고리즘은 VUE point HD에서 사용되는 기본 모델의 정확성을 향상시켰다. 또한 SharpIR은 VUE point HD보다 각각의 복셀에 관련된 더 많은 측정 위치를 가지는 시스템 모델이기 때문에 더욱 정교한 재구성 모델의 결과를 나타내기 위해 더 많은 반복이 걸린다. 결론적으로 SharpIR은 PET 영상에서 대조도를 향상시켰고 임상에서 적용할 수 있는 최적화된 재구성 조건을 알아보기 위해 종단적 연구를 통해 적용한다면 임상에서 유용하게 사용될 것이다.

  • PDF

단 반감기 핵종을 이용한 PET 검사 시 영상 획득 시간에 따른 정량성 평가 (The Evaluation of Difference according to Image Scan Duration in PET Scan using Short Half-Lived Radionuclide)

  • 홍건철;차은선;곽인석;이혁;박훈;최춘기;석재동
    • 핵의학기술
    • /
    • 제16권1호
    • /
    • pp.102-107
    • /
    • 2012
  • 단 반감기 핵종을 이용한 PET검사는 방사성동위원소의 빠른 물리적 붕괴로 인하여 영상 획득을 위한 계수검출이 제한적이다. 이러한 이유로 비교적 낮은 감도의 검사에서는 보다 정확한 정량적 평가를 위하여 긴 시간동안 영상 획득을 적용하기도 한다. 본 연구에서는 $^{11}C$$^{18}F$를 이용한 PET 검사 시 영상 획득 시간에 따른 차이를 평가하여 합리적인 영상 획득 시간에 관하여 알아보고자 한다. 1994 NEMA Phantom에 $^{11}C$$30.08{\pm}4.22MBq$, $^{18}F$$40.08{\pm}8.29MBq$을 증류수에 희석하여 채운 후 $^{11}C$은 동적영상 1분씩 20회, 정적 영상 20분, $^{18}F$은 동적영상 2분30초씩 20회, 정적영상 50분을 획득하였다. 모든 데이터는 동일한 재구성법을 적용하였으며, 시간의 경과에 따른 붕괴보정을 적용하였다. 방출영상에 관심영역을 설정하고 최대 방사능 농도값(kBq/mL)을 비교하였으며, 각각의 동적영상을 영상 획득 시간의 증가에 따라 1개씩 증가시켜 영상 합산(Image summation) 후 영상의 관심 영역 내에서의 최대 방사능 농도값(kBq/mL)을 평가하였다. $^{11}C$ 동적영상의 시간 경과에 따른 최대 방사능 농도값은 $3.85{\pm}0.45{\sim}5.15{\pm}0.50kBq/mL$, 정적영상은 $2.15{\pm}0.26kBq/mL$였다. $^{18}F$ 동적영상은 $9.09{\pm}0.42{\sim}9.48{\pm}0.31kBq/mL$, 정적영상은 $7.24{\pm}0.14kBq/mL$였다. $^{11}C$의 동적영상 합산에서 영상 획득 시간의 합이 5, 10, 15, 20분으로 증가할수록 $2.47{\pm}0.4$, $2.22{\pm}0.37$, $2.08{\pm}0.42$, $1.95{\pm}0.55kBq/mL$으로 감소하였으며, $^{18}F$의 경우 합산된 영상 획득 시간의 합이 12분 30초, 25분, 37분 30초, 50분으로 증가할수록 $7.89{\pm}0.27$, $7.61{\pm}0.23$, $7.36{\pm}0.21$, $7.31{\pm}0.23kBq/mL$으로 감소하였다. 영상의 질을 평가 하는 SNR에서는 $^{11}C$$^{18}F$ 모두 동적영상획득 방법에서는 주사 후 시간이 흐를수록 SNR가 저하 되었으나, 영상 합산획득 방법에서는 합산 횟수가 증가 할수록 SNR가 향상 되는 것을 알 수 있었다. 동적영상에서 시간 경과에 따른 최대 방사능 농도값은 $^{11}C$$^{18}F$에서 증가하였고, 동적영상 합산의 경우는 합산수가 증가함에 따라 최대 방사능 농도값은 $^{11}C$$^{18}F$ 감소함을 보였다. $^{18}F$을 이용할 경우에는 시간 경과에 따른 정량평가의 오차를 크게 고려하지 않아도 될 것으로 사료되고, $^{11}C$를 이용한 PET 검사는 시간경과에 따른 감쇠 보정의 오차를 감안하여 추가의 감쇠 보정법을 적용하거나 30%정도의 오차를 적용하여 정적영상 획득시간을 반감기의 25% 이내인 5분 내외로 설정해야 할 것이다.

  • PDF

PET/CT 검사에서 매개변수 입력오류에 따른 표준섭취계수 평가 (The Evaluation of SUV Variations According to the Errors of Entering Parameters in the PET-CT Examinations)

  • 김지아;홍건철;이혁;최성욱
    • 핵의학기술
    • /
    • 제18권1호
    • /
    • pp.43-48
    • /
    • 2014
  • PET/CT검사에서 표준섭취계수(standardized uptake value, SUV)는 병소의 악성 여부를 판별하는 지표로서 인체내 각 장기의 생리적인 변화에 대한 정량분석을 가능하게 한다. 따라서 그 결과에 영향을 줄 수 있는 매개변수를 올바르게 입력하는 것이 매우 중요하다. 본 연구에서는 그 매개변수 중 방사능량, 체중, 방사성 동위원소 섭취시간의 입력오류에 따른 결과의 차이를 측정하여 수용 가능한 결과의 오차범위를 평가하고자 한다. 1994 NEMA 모형 내부에 열소, 테프론, 그리고 공기 3개의 삽입물을 위치시켰다. 총 27.3 MBq의 $^{18}F$를 열소와 배후 방사능 비율이 4:1로 되도록 채우고 GE Discovery STE 16(GE Healthcare, Milwaukee, USA)로 촬영하였다. 촬영 후 입력된 방사능량, 체중, 섭취 시간의 값을 기준 값에서 ${\pm}5%$, 10%, 15%, 30%, 50% 만큼 오차를 발생시킨 후 영상을 다시 재구성하였다. 재구성된 영상에서 각 삽입물 부위에 한 개, 배후방사능 부위에 총 네 개의 관심영역을 그린 후 $SUV_{mean}$과 백분율오차를 측정하여 비교 평가하였다. 기준 영상의 열소, 테프론 그리고 공기와 배후방사능에서의 $SUV_{mean}$은 각각 4.5, 0.02, 0.1 그리고 1.0이였다. 방사능량 오차 변화에 따른 $SUV_{mean}$의 최대값과 최소값은 열소에서 9.0, 3.0, 테프론에서 0.04, 0.01, 공기에서 0.3, 0.1, 배후 방사능에서 2.0, 0.6로 변화된 값을 보였다. 이 때 백분율오차는 모두 동일하게 최대 100%에서 최소 -33%로 나타났다. 체중 오차 변화의 경우 열소에서 2.2, 6.7, 테프론에서 0.01, 0.03, 공기에서 0.09. 0.28, 배후방사능에서 0.5, 1.5로 변화된 값을 보였다. 이 때 백분율오차는 테프론의 최소 -50%, 최대 52%를 제외하고 모두 최소 -50%에서 최대 50% 로 동일하게 나타났다. 섭취시간 오차의 경우 열소에서 3.8, 5.3, 테프론에서 0.01, 0.02, 공기에서 0.1, 0.2, 배후방사능에서 0.8에서 1.2로 변화된 값을 보였다. 백분율오차는 열소와 배후방사능은 최소 -14%에서 최대 17%로 동일하게 나타났으며 테프론의 경우 최소 -11%에서 최대 21%, 공기의 경우 최소 -12%에서 최대 20%로 나타났다. 일반적으로 수용 가능한 오차의 범위를 5%로 설정할 경우, 본 실험 결과에서 방사능량과 체중의 오차가 ${\pm}5%$ 이내 일 때 $SUV_{mean}$의 오차가 5% 범위에 포함되었다. 이러한 결과들을 고려해 볼 때 검사장비에 입력되는 방사능량과 체중에 직접적인 영향을 줄 수 있는 선량검량계와 체중계의 검교정은 오차범위 5% 이내로 이루어져야 한다. 섭취 시간의 경우 삽입물의 종류에 따라 서로 다른 오차 범위를 보였으며 열소와 배후방사능에서 오차가 ${\pm}15%$ 이내일 때 $SUV_{mean}$에 5% 내의 오차가 발생하였다. 따라서 검사 시 촬영용 스캐너를 포함하여 두 개 이상의 시계를 사용할 경우 각각의 시간 오차들도 함께 고려되어야 할 것이다.

  • PDF

68Ga 표지 PET/CT 검사의 최적화된 매개변수에 대한 연구 (Study of 68Ga Labelled PET/CT Scan Parameters Optimization)

  • 곽인석;이혁;김시활;문승철
    • 핵의학기술
    • /
    • 제27권2호
    • /
    • pp.111-127
    • /
    • 2023
  • Purpose: Gallium-68 (68Ga) is increasingly used in nuclear medicine imaging for various conditions such as lymphoma and neuroendocrine tumors by labeling tracers like Prostate Specific Membrane Antigen (PSMA) and DOTA-TOC. However, compared to Fluorine-18 (18F) used in conventional nuclear medicine imaging, 68Ga has lower spatial resolution and relatively higher Signal to Background Ratio (SBR). Therefore, this study aimed to investigate the optimized parameters and reconstruction methods for PET/CT imaging using the 68Ga radiotracer through model-based image evaluation. Materials and Methods: Based on clinical images of 68Ga-PSMA PET/CT, a NEMA/IEC 2008 PET phantom model was prepared with a Hot vs Background (H/B) ratio of 10:1. Images were acquired for 9 minutes in list mode using DMIDR (GE, Milwaukee WI, USA). Subsequently, reconstructions were performed for 1 to 8 minutes using OS-EM (Ordered Subset Expectation Maximization) + TOF (Time of Flight) + Sharp IR (VPFX-S), and BSREM (Block Sequential Regularized Expectation Maximization) + TOF + Sharp IR (QCFX-S-400), followed by comparative evaluation. Based on the previous experimental results, images were reconstructed for BSREM + TOF + Sharp IR / 2 minutes (QCFX-S-2min) with varying β-strength values from 100 to 700. The image quality was evaluated using AMIDE (freeware, Ver.1.0.1) and Advanced Workstation (GE, USA). Results: Images reconstructed with QCFX-S-400 showed relatively higher values for SNR (Signal to Noise Ratio), CNR (Contrast to Noise Ratio), count, RC (Recovery Coefficient), and SUV (Standardized Uptake Value) compared to VPFX-S. SNR, CNR, and SUV exhibited the highest values at 2 minutes/bed acquisition time. RC showed the highest values for a 10 mm sphere at 2 minutes/bed acquisition time. For small spheres of 10 mm and 13 mm, an inverse relationship between β-strength increase and count was observed. SNR and CNR peaked at β-strength 400 and then decreased, while SUV and RC exhibited a normal distribution based on sphere size for β-strength values of 400 and above. Conclusion: Based on the experiments, PET/CT imaging using the 68Ga radiotracer yielded the most favorable quantitative and qualitative results with a 2 minutes/bed acquisition time and BSREM reconstruction, particularly when applying β-strength 400. The application of BSREM can enhance accurate quantification and image quality in 68Ga PET/CT imaging, and an optimization process tailored to each institution's imaging objectives appears necessary.