• Title/Summary/Keyword: NDT for concrete

Search Result 74, Processing Time 0.021 seconds

Non-destructive evaluation of concrete quality using PZT transducers

  • Tawie, R.;Lee, H.K.;Park, S.H.
    • Smart Structures and Systems
    • /
    • v.6 no.7
    • /
    • pp.851-866
    • /
    • 2010
  • This paper presents a new concept of using PZT (lead zircornate titanate) transducers as a non-destructive testing (NDT) tool for evaluating quality of concrete. Detection of defects in concrete is very important in order to check the integrity of concrete structures. The electro-mechanical impedance (EMI) response of PZT transducers bonded onto a concrete specimen can be used for evaluating local condition of the specimen. Measurements are carried out by electrically exciting the bonded PZT transducers at high frequency range and taking response measurements of the transducers. In this study, the compression test results showed that concrete specimens without sufficient compaction are likely to fall below the desired strength. In addition, the strength of concrete was greatly reduced as the voids in concrete were increased. It was found that the root mean square deviation (RMSD) values yielded between the EMI signatures for concrete specimens in dry and saturated states showed good agreement with the specimens' compressive strength and permeable voids. A quality metric was introduced for predicting the quality of concrete based on the dry-saturated state of concrete specimens. The simplicity of the method and the current development towards low cost and portable impedance measuring system, offer an advantage over other NDE methods for evaluating concrete quality.

A Study on the Pull-out test for Non-Destructive Evaluation of Concrete Strength (콘크리트 비파괴강도 추정을 위한 인발시험법에 대한 연구)

  • 한만엽;김동욱
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.639-642
    • /
    • 1999
  • Pullout test known as Lok test among the test methods to evaluate concrete strength strength is a test method which is used to decide the form removal time by assessing the early strength of concrete in a new construction, or to control the quality of newly placed concrete. This method has inconvenience to place inserts on the form work in advance, however, the placing work is quite simple and it has advantage that the strength can be measured at field as long as the inserts are placed. In this study, the first step is to investigate the properties of test method itself, by performing the laboratory test which covers deviation of the method and factors affecting the results, etc. The second step is to correlate the result with cylinder strength and other NDT methods such as rebound hammer, ultrasonic method, etc. And that, the results are compared with foreign results to find the differences between the two. In this research, new factors such as moisture content, area of aggregate failure cross section and area of aggregate separation cross section, etc as well as wate-cement ratio and age are investigated.

  • PDF

Application of Modeling of Electromagnetic Wave Propagation for Thickness Determination Using Finite Difference-Time Domain (유한차분 시간영역법을 이용한 콘크리트 두께측정 전자파 모델링의 적용)

  • 임홍철;남국광
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.341-349
    • /
    • 2002
  • The radar method is becoming one of the major nondestructive testing(NDT) techniques lot concrete structures. Numerical modeling of electromagnetic wane is needed to analyze radar measurement results. Finite difference-time domain(FD-TD) method can be used to simulate electromagnetic wave propagation through concrete specimens. Five concrete specimens with different thickness are modeled in 3-dimension. Radar modeling results compare measurement results to find backface of the concrete specimens and measure thickness of the concrete specimens.

A Study on the Modeling of Electromagnetic Wave Propagation for the Detection of a Delamination in Concrete Specimens (콘크리트 내의 공동탐사를 위한 전자기파 모델링)

  • 조윤범;임홍철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.119-124
    • /
    • 2000
  • The radar method is becoming one of the major nondestructive testing (NDT) techniques for concrete structures. Numerical modeling of electromagnetic wave is needed to analyze radar measurement results and to study the influence of measurement parameters on the radar measurements. Finite difference-time domain (FD-TD) method is used to simulate electromagnetic wave propagation through concrete specimens. Three concrete specimens with a 25 mm delamination embedded at 25 mm, 50 mm, and 75mm depth are modeled in 3-dimension. Also, thickness change of delamination and permittivity change are modeled.

  • PDF

A Study on the Determination of Concrete Thickness and Effective Measurement Area using Radar (레이더를 이용한 콘크리트의 두께 측정과 유효 측정범위 설정에 관한 연구)

  • Rhim, Hong-Chul;Lee, Ji-Hoon;Son, Byung-Oh
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.4
    • /
    • pp.296-304
    • /
    • 2000
  • Radar is becoming a popular tool for condition assessment of concrete structures. The advancement of radar method to concrete structures requires a systematic approach, which incorporates the fundamentals of radar theory and the characteristics of concrete as a material with electromagnetic properties. The research work presented in this paper deals with the establishment of effective measurement area for radar measurements, the determination of concrete thickness using radar, and the calculation of the dielectric constant of concrete from radar measurements. As results, formulas have been suggested to determine optimum measurement area for concrete, using radar and concrete thickness has been successfully identified for specimens used in this work. In the experiments, five concrete specimens which have the dimensions of 900mm (length) $\times$ 600mm (width) with thickness variation from 50mm to 250mm are used.

  • PDF

Damage Detection of Decrepit Tunnel Structures using the NDT (비파괴 검사법에 의한 노후터널의 건전도 평가)

  • Kim, Dong-Gyou;Jung, Ho-Seop
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1388-1391
    • /
    • 2010
  • Recently, the construction of road, subway, railroad, and microtunnel for electricity supplement have been increased because of increasement of traffic in urban area, increasement of industrial transportation, and the network between cities in Korea. The deterioration of tunnel structure may occur by various internal and external factors and particularly, tunnel structures tend to contact with either underground water or harmful ions. Therefore, leakage sometimes occurred through the cracks and joints of concrete lining. The leakage in tunnel may affect the durability of concrete lining. In this study, to evaluate the durability and deterioration of concrete lining in tunnel structures, we were performed the various experiments for compressive strength. Compressive strength obtained from nondestructive inspection and compressive strength test varies according to the concrete lining conditions.

  • PDF

IBEM analyses on half-cell potential measurement for NDE of rebar corrosion

  • Kyung, Je-Woon;Tae, Sung-Ho;Lee, Han-Seung;Alver, Yalcin;Yoo, Jo-Hyeong
    • Computers and Concrete
    • /
    • v.4 no.4
    • /
    • pp.285-298
    • /
    • 2007
  • Corrosion of Reinforcement (rebar) is nondestructively estimated by the half-cell potential measurement. As is the case with other nondestructive testings (NDT), understanding of the underlying principles should be clarified in order to obtain meaningful results. Therefore, the measurement of potentials in concrete is analytically investigated. The effect of internal defects on the potentials measured is clarified numerically by the boundary element method (BEM). Thus, a simplified inversion by BEM is applied to convert the potentials on concrete surface to those on rebars, taking into account the concrete resistivity. Because the potentials measured on concrete surface are so sensitive to moisture content, concrete resistivity and surface condition, an inverse procedure to convert the potentials on concrete surface into those on rebars is developed on the basis of BEM. It is found that ASTM criterion is practically applicable to estimate corrosion from the potential values converted. In experiments, an applicability of the procedure is examined by accelerated corrosion tests of reinforced concrete (RC) slabs. For practical use, the procedure is developed where results of IBEM are visualized by VRML (Virtual Reality modeling Language) in three-dimensional space.

An Experimental Study on the Evaluation of Injection-ability for Concrete Crack-Repair Materials by using Ultrasonic Pulse Measurement Method. (초음파 측정법을 이용한 콘크리트 균열보수재의 충전성능 평가에 관한 실험적 연구)

  • Lee, Sang-Hyun;Lee, Han-Seung;Park, Sung-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.515-518
    • /
    • 2005
  • A concrete is easy to happen crack. So it requires crack-repair work to solve quality deteriorations of a building because of cracks. When crack is filled with crack-repair materials, it is difficult to find out how depth it was injected. So in this study we evaluated the injection depth with using indirect and oblique methods, ultrasonic pulse measurement method of NDT. The results of this study showed that both methods are possible to evalute penetration depth of crack-repair materials and indirect methods is thought to be more useful one than obliqure one.

  • PDF

Depth estimation for surface-breaking cracks in steel-fiber reinforced concrete using ultrasonic surface waves

  • Ahmet S. Kirlangic;Zafer Iscan
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.4
    • /
    • pp.373-388
    • /
    • 2022
  • A USW based diagnostic procedure is presented for estimating the depth of surface-breaking cracks. The diagnosis is demonstrated on seven lab-scale SFRC beam specimens, which are subjected to the CMOD controlled three-point bending test to create real bending cracks. Then, the recorded multiple ultrasonic signals are examined with the signal processing techniques, including wavelet transform and two-dimensional Fourier transform, to investigate the relationships between the crack depth and two diagnostic indices, namely the attenuation coefficient and dispersion index (DI). Finally, the reliabilities of these indices for depth estimation are verified with the visually measured crack depths as well as the crack features obtained with a digital image processing algorithm. It is found that the DI outperforms the attenuation coefficient in depth estimation, where this index displays good agreement with the visual inspection for 86% of the inspected specimens.

Development of Compressive Strength Estimation Equation for Concrete Mixed with Granite Aggregates (화강암골재를 사용한 콘크리트의 강도추정식 개발)

  • Rhim, Hong-Chul;Seo, Tae-Seok;Woo, Sang-Kyun;Song, Young-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.91-98
    • /
    • 2002
  • Prediction for the compressive strength of concrete by non-destructive tests(NDT) has a tendency to show different outcomes according to various aggregates. The purpose of this study is to develop estimation equation by rebound number, ultrasonic velocity and combined method at concrete structures which used granite as coarse aggregates. The test variable is water/cement ratio(41.1%, 48.6%, 67.6%), curing method(moisture condition, dry condition) and age(7, 14, 28, 56). According to the test variable, new equation was suggested, and compared with the existing equations.