• Title/Summary/Keyword: NDE evaluation

Search Result 175, Processing Time 0.03 seconds

CT Image Reconstruction of Wood Using Ultrasound Velocities II - Determination of the Initial Model Function of the SIRT Method -

  • Kim, Kwang-Mo;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.5 s.133
    • /
    • pp.29-37
    • /
    • 2005
  • A previous study verified that the SIRT (simultaneous iterative reconstruction technique) method is more efficient than the back-projection method as a CT algorithm for wood. However, it was expected that the determination of the initial model function of the SIRT method would influence the quality of CT image. Therefore, in this study, we intended to develop a technique that could be used to determine an adequate initial model function. For this purpose, we proposed several techniques, and for each technique we examined the effects of the initial model function on the average errors and the CT image at each iteration. Through this study, it was shown that the average error was decreased and the image quality was improved using the proposed techniques. This tendency was most pronounced when the back-projection method was used to determine the initial model function. From the results of this study, we drew the following conclusions: 1) The initial model function of the SIRT method should be determined with careful attention, and 2) the back-projection method efficiently determines the initial model function of the SIRT method.

Two-module robotic pipe inspection system with EMATs

  • Lee, Jin-Hyuk;Han, Sangchul;Ahn, Jaekyu;Kim, Dae-Hyun;Moon, Hyungpil
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.1041-1063
    • /
    • 2014
  • This work introduces a two-module robotic pipe inspection system with ultrasonic NDE device to evaluate the integrity of pipe structures. The proposed robotic platform has high mobility. The two module mobile robot platform overcomes pipe obstacle structures such as elbow, or T-branch joints by cooperative maneuvers. Also, it can climb up the straight pipeline at a fast speed due to the wheel driven mechanism. For inspection of pipe structure, SH-waves generated by EMAT are applied with additional signal processing methods. A wavelet transform is implemented to extract a meaningful and specific signal from the superposed SH-wave signals. Intensity ratio which is normalized the defect signals intensity by the maximum intensity of directly transmitted signals in the wavelet transforms spectrum is applied to evaluate defects quantitatively. It is experimentally verified that the robotic ultrasonic inspection system with EMAT is capable of non-destructive inspection and evaluation of defects in pipe structure successfully by applying signal processing method based on wavelet transform.

One-Sided Nondestructive Evaluation of Back-Side Wedge By Using Ultrasonic Sound (초음파를 이용한 배면웨지의 일방향 비파괴 특성평가)

  • Jeong, Jong-An;Hsu, David K.;Im, Kwang-Hee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.773-777
    • /
    • 2011
  • Conventional ultrasonic thickness measurement is to be considered as the assumption that the ultrasonic velocity is known. In actual applications the velocity is often not well known and access is often limited to one side. This paper aims at determining the ultrasonic velocity and thickness of plates with parallel or wedged surfaces using contact measurements made on one surface only. For wedged plates the thickness at one point and the wedge angle are determined. Equations are used for determining the ultrasonic velocity, thickness and wedge angle of the plate based on the times-of-flight measured by two contact transducers coupled to one surface. The time-of-flight of the obliquely reflected longitudinal wave echo was measured as a function of the separation between the two transducers. In addition, a simulation was made for comparing the experimental data and a FEM image. Experiments and simulations were performed on flat and wedged plates of aluminium materials; the calculated results for the unknown quantities are generally agreed with them to some degree.

Classification Technique for Ultrasonic Weld Inspection Signals using a Neural Network based on 2-dimensional fourier Transform and Principle Component Analysis (2차원 푸리에변환과 주성분분석을 기반한 초음파 용접검사의 신호분류기법)

  • Kim, Jae-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.6
    • /
    • pp.590-596
    • /
    • 2004
  • Neural network-based signal classification systems are increasingly used in the analysis of large volumes of data obtained in NDE applications. Ultrasonic inspection methods on the other hand are commonly used in the nondestructive evaluation of welds to detect flaws. An important characteristic of ultrasonic inspection is the ability to identify the type of discontinuity that gives rise to a peculiar signal. Standard techniques rely on differences in individual A-scans to classify the signals. This paper proposes an ultrasonic signal classification technique based on the information tying in the neighboring signals. The approach is based on a 2-dimensional Fourier transform and the principal component analysis to generate a reduced dimensional feature vector for classification. Results of applying the technique to data obtained from the inspection of actual steel welds are presented.

Influence of Compressive Stress in TGO Layer on Impedance Spectroscopy from TBC Coatings

  • Kang, To;Zhang, Jianhai;Yuan, Maodan;Song, Sung-Jin;Kim, Hak-Joon;Kim, Yongseok;Seok, Chang Sung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.1
    • /
    • pp.46-53
    • /
    • 2013
  • Impedance spectroscopy is a non-destructive evaluation (NDE) method first proposed and developed for evaluating TGO layers with compressive stress inside thermally degraded plasma-sprayed thermal barrier coatings (PS TBCs). A bode plot (phase angle (h) vs. frequency (f)) was used to investigate the TGO layer on electrical responses. In our experimental study, the phase angle of Bode plots is sensitive for detecting TGO layers while applying compressive stress on thermal barrier coatings. It is difficult to detect TGO layers in samples isothermally aged for 100 hrs and 200 hrs without compressive stress, and substantial change of phase was observed these samples with compressive stress. Also, the frequency shift of the phase angle and change of the phase angle are observed in samples isothermally aged for more than 400 hrs.

Non-destructive evaluation of concrete quality using PZT transducers

  • Tawie, R.;Lee, H.K.;Park, S.H.
    • Smart Structures and Systems
    • /
    • v.6 no.7
    • /
    • pp.851-866
    • /
    • 2010
  • This paper presents a new concept of using PZT (lead zircornate titanate) transducers as a non-destructive testing (NDT) tool for evaluating quality of concrete. Detection of defects in concrete is very important in order to check the integrity of concrete structures. The electro-mechanical impedance (EMI) response of PZT transducers bonded onto a concrete specimen can be used for evaluating local condition of the specimen. Measurements are carried out by electrically exciting the bonded PZT transducers at high frequency range and taking response measurements of the transducers. In this study, the compression test results showed that concrete specimens without sufficient compaction are likely to fall below the desired strength. In addition, the strength of concrete was greatly reduced as the voids in concrete were increased. It was found that the root mean square deviation (RMSD) values yielded between the EMI signatures for concrete specimens in dry and saturated states showed good agreement with the specimens' compressive strength and permeable voids. A quality metric was introduced for predicting the quality of concrete based on the dry-saturated state of concrete specimens. The simplicity of the method and the current development towards low cost and portable impedance measuring system, offer an advantage over other NDE methods for evaluating concrete quality.

Application of Lamb Waves and Probabilistic Neural Networks for Health Monitoring of Joint Steel Structures (강 구조물 접합부의 건전성 감시를 위한 램 웨이브와 확률 신경망의 적용)

  • Park, Seung-Hee;Lee, Jong-Jae;Yun, Chung-Bang;Roh, Yong-Rae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.625-632
    • /
    • 2004
  • This study presents the NDE (non-destructive evaluation) technique for detecting the loosened bolts on joint steel structures on the basis of TOF (time of flight) and amplitudes of Lamb waves. Probabilistic neural network (PNN) technique which is an effective tool for pattern classification problem was applied to the damage estimation using PZT induced Lamb waves. Two kinds of damages were introduced by dominant damages (DD) which mean loosened bolts within the Lamb waves beam width and minor damages (MD) which mean loosened bolts out of the Lamb waves beam width. They were investigated for the establishment of the optimal decision boundaries which divide each damage class's region including the intact class. In this study, the applicability of the probabilistic neural networks was identified through the test results for the damage cases within and out of wave beam path. It has been found that the present methods are very efficient and reasonable in predicting the loosened bolts on the joint steel structures probabilistically.

  • PDF

Crack localization by laser-induced narrowband ultrasound and nonlinear ultrasonic modulation

  • Liu, Peipei;Jang, Jinho;Sohn, Hoon
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.301-310
    • /
    • 2020
  • The laser ultrasonic technique is gaining popularity for nondestructive evaluation (NDE) applications because it is a noncontact and couplant-free method and can inspect a target from a remote distance. For the conventional laser ultrasonic techniques, a pulsed laser is often used to generate broadband ultrasonic waves in a target structure. However, for crack detection using nonlinear ultrasonic modulation, it is necessary to generate narrowband ultrasonic waves. In this study, a pulsed laser is shaped into dual-line arrays using a spatial mask and used to simultaneously excite narrowband ultrasonic waves in the target structure at two distinct frequencies. Nonlinear ultrasonic modulation will occur between the two input frequencies when they encounter a fatigue crack existing in the target structure. Then, a nonlinear damage index (DI) is defined as a function of the magnitude of the modulation components and computed over the target structure by taking advantage of laser scanning. Finally, the fatigue crack is detected and localized by visualizing the nonlinear DI over the target structure. Numerical simulations and experimental tests are performed to examine the possibility of generating narrowband ultrasonic waves using the spatial mask. The performance of the proposed fatigue crack localization technique is validated by conducting an experiment with aluminum plates containing real fatigue cracks.

Classification of Ultrasonic NDE Signals Using the Expectation Maximization (EM) and Least Mean Square (LMS) Algorithms (최대 추정 기법과 최소 평균 자승 알고리즘을 이용한 초음파 비파괴검사 신호 분류법)

  • Kim, Dae-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.1
    • /
    • pp.27-35
    • /
    • 2005
  • Ultrasonic inspection methods are widely used for detecting flaws in materials. The signal analysis step plays a crucial part in the data interpretation process. A number of signal processing methods have been proposed to classify ultrasonic flaw signals. One of the more popular methods involves the extraction of an appropriate set of features followed by the use of a neural network for the classification of the signals in the feature spare. This paper describes an alternative approach which uses the least mean square (LMS) method and exportation maximization (EM) algorithm with the model based deconvolution which is employed for classifying nondestructive evaluation (NDE) signals from steam generator tubes in a nuclear power plant. The signals due to cracks and deposits are not significantly different. These signals must be discriminated to prevent from happening a huge disaster such as contamination of water or explosion. A model based deconvolution has been described to facilitate comparison of classification results. The method uses the space alternating generalized expectation maximiBation (SAGE) algorithm ill conjunction with the Newton-Raphson method which uses the Hessian parameter resulting in fast convergence to estimate the time of flight and the distance between the tube wall and the ultrasonic sensor. Results using these schemes for the classification of ultrasonic signals from cracks and deposits within steam generator tubes are presented and showed a reasonable performances.

Analysis of Magnetic Flux Leakage based Local Damage Detection Sensitivity According to Thickness of Steel Plate (누설자속 기반 강판 두께별 국부 손상 진단 감도 분석)

  • Kim, Ju-Won;Yu, Byoungjoon;Park, Sehwan;Park, Seunghee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.2
    • /
    • pp.53-60
    • /
    • 2018
  • To diagnosis the local damages of the steel plates, magnetic flux leakage (MFL) method that is known as a adaptable non-destructive evaluation (NDE) method for continuum ferromagnetic members was applied in this study. To analysis the sensitivity according to thickness of steel plate in MFL method based damage diagnosis, several steel plate specimens that have different thickness were prepared and three depths of artificial damage were formed to the each specimens. To measured the MFL signals, a MFL sensor head that have a constant magnetization intensity were fabricated using a hall sensor and a magnetization yoke using permanent magnets. The magnetic flux signals obtained by using MFL sensor head were improved through a series of signal processing methods. The capability of local damage detection was verified from the measured MFL signals from each damage points. And, the peak to peak values (P-P value) extracted from the detected MFL signals from each thickness specimen were compared each other to analysis the MFL based local damage detection sensitivity according to the thickness of steel plate.