• 제목/요약/키워드: NCI-H292 cells

검색결과 67건 처리시간 0.024초

기도의 점액 과분비 질환에서 MUC5AC의 발현의 신호 전달 경로에 관한 연구 (Signal Transduction of MUC5AC Expression in Airway Mucus Hypersecretory Disease)

  • 심재정
    • Tuberculosis and Respiratory Diseases
    • /
    • 제55권1호
    • /
    • pp.21-30
    • /
    • 2003
  • 서 론 : MUC genes의 증가와 배상세포의 증식 기전에 성장인자(growth factor)인 상피세포 성장인자 및 수용체(epidermal growth factor receptor; EGFR)가 배상세포의 증식이나 이형성에 관여한다. EGFR의 ligands 중의 한 종류인 heparin binding EGF(HB-EGF)는 세포막에 존재하는 pro-heparin binding EGF(pro-HB-EGF)로부터 유리된다. HB-EGF의 유리는 G-protein과 연관이 있다. 따라서, 본 연구는 그람 음성세균의 lipopolysaccande(LPS)에 의한 기도 점액 과생성의 기전을 밝히고, 기도점액 과분비에서 EGFR과 G-protein의 연관성을 밝혀 기도 점액 과분비 기전을 밝히고자 한다. 연구방법 : NCI-H292 세포배양에서 LPS단독 투여 또는TGF-${\alpha}$와 병합 투여한 후 MUC5AC의 당단백질을 ELISA법으로 측정하였다. LPS에 의한 MUC5AC 당단백질의 생성 기전을 밝히기 위해서 heterotrimeric G-protein 억제제인 mastoparan을 투여하고 TNF-${\alpha}$와 MUC5AC를 ELISA법으로 각각 측정하였다. MUC5AC의 생성에서 G-protein과 EGFR의 연관성을 확인하기 위하여 EGFR이 항상 발현되어 있고 MUC5AC를 분비할 수 있는 NCI-H292 세포에 G-protein 자극제인 mastoparan-7로 자극한 후 MUC5AC의 생성을 측정하였다. G-protein이 활성화하여 metalloproteinase가 세포막에 있는 HB-EGF를 유리하여 EGFR이 활성화하여 MUC5AC가 생성여부를 확인하기 위하여 ADAM10으로 NCI-H292세포에 자극하여 MUC5AC의 생성을 측정하였다. MUC5AC 생성이 EGFR과 연관성을 확인하기 위하여 특이 EGFR tyrosine kinase 억제제인 AG1478과 중화 polyclonal EGF 항체를 전처치 후 MUC5AC를 측정하였다. 결 과 : LPS의 자극에 의한 MUC5AC의 생성은 LPS 농도에 유의하게 증가 되지 않았으나, EGFR의 ligand인 TGF-${\alpha}$를 동시 투여한 경우는 LPS의 농도에 비례하여 유의하게 증가하였다. LPS의 자극은 TNF-${\alpha}$의 생성을 유의하게 증가시켰으며, G-protein 억제제인 mastoparan을 전처치한 경우는 TNF-${\alpha}$가 유의하게 감소 되었다. LPS 자극 전에 TNF-${\alpha}$ antibody, AG1478 또는 mastoparan을 전처치한 경우는 MUC5AC의 생성이 유의하게 억제되었다. MUC5AC의 생생에서 G-protein과 EGFR의 연관성에 대한 실험에서 MUC5AC의 생성이 mastoparan-7의 농도에 따라 유의하게 증가되었으며, EGF의 중화항체를 사용한 경우는 MUC5AC의 생성이 감소되었다. 또한 Matrix metalloproteinase인 ADAM10의 농도에 비례하여 MUC5AC의 생성을 증가시켰다. 결 론 : LPS에 의한 MUC5AC의 분비는 LPS가 TNF-${\alpha}$를 생성시키고, TNF-${\alpha}$가 EGFR의 발현을 유도하여 MUC5AC가 분비되었다. 또한 MUC5AC의 생성에 있어서 G-protein의 활성은 matrix metalloproteinase에 의하여 EGFR의 ligand 인 HB-EGF가 유리되어 EGFR의 transacti vation으로 MUC5AC가 생성되는 것으로 사료된다.

황련해독탕이 수종의 인간 암세포 증식에 미치는 영향 (The Effect of Hwangryunhaedoktang on Proliferations of Various Human Cancer Cells)

  • 성현경;민상연;김장현
    • 대한한방소아과학회지
    • /
    • 제27권1호
    • /
    • pp.59-68
    • /
    • 2013
  • Objectives The aim of this study is to investigate whether hwang-ryun-haedok-tang (HDT) affect proliferations of androgen-dependent LNCaP prostate cancer cells, androgen-independent PC-3, DU-145 prostate cancer cells, MCF-7 human breast cancer cells, A549, NCI-H292 human pulmonary cancer cells and K-562 human chronic myelogenous leukemia cells. Materials and Methods Effects of HDT on proliferations of each cancer cell line were investigated. 20,000 cells/well were plated in each well of 96-well culture plate. After 24 hrs, 0.01-10% of HDT in culture medium was added to cancer cells. The number of cells was counted by using SRB assay or direct cell counting method after 72 hours from drug treatment. Effect of baicalein or berebrine on proliferation was assessed according to the same method. Results (1) HDT inhibited proliferations of LNCaP, PC-3 and DU-145 prostate cancer cells. (2) HDT inhibited proliferation of MCF-7 breast cancer cells. (3) HDT also inhibited proliferations of A549, NCI-H292 pulmonary cancer cells and K-562 chronic myelogenous leukemia cells. (4) Baicalein and berberine also showed inhibitory effects on proliferations of prostate and breast cancer cells. Conclusion : HDT inhibited proliferations of human prostate, breast, pulmonary and blood cancer cells. These results suggest us the potential use of HDT as a chemopreventive or chemotherapeutic agent. Effect of HDT on human cancer should be further investigated using in vivo experimental models that can reflect pathophysiology of human cancer through another studies.

Effects of Caffeic Acid, Myristicin and Rosemarinic Acid on the Gene Expression and Production of Airway MUC5AC Mucin

  • Lee, Hyun Jae;Lee, Kang Ro;Hong, Jang-Hee;Lee, Choong Jae
    • Natural Product Sciences
    • /
    • 제22권4호
    • /
    • pp.275-281
    • /
    • 2016
  • Perilla frutescens was empirically used for controlling airway inflammatory diseases in folk medicine. We investigated whether caffeic acid, myristicin and rosemarinic acid derived from Perilla frutescens significantly affect the gene expression and production of mucin from airway epithelial cells. Confluent NCI-H292 cells were pretreated with caffeic acid, myristicin or rosemarinic acid for 30 min and then stimulated with phorbol 12-myristate 13-acetate (PMA) for 24 h. The MUC5AC mucin gene expression and production were measured by reverse transcription - polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Additionally, we examined whether caffeic acid, myristicin or rosemarinic acid affects MUC5AC mucin production indued by epidermal growth factor (EGF) and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), the other two stimulators of production of airway mucin. The results were as follows: (1) Caffeic acid, myristicin and rosemarinic acid inhibited the gene expression and production of MUC5AC mucin induced by PMA from NCI-H292 cells, respectively; (2) Among the three compounds derived from Perilla frutescens, only rosemarinic acid inhibited the production of MUC5AC mucin induced by EGF or $TNF-{\alpha}$, the other two stimulators of production of airway mucin. These results suggest that rosemarinic acid derived from Perilla frutescens can regulate the production and gene expression of mucin, by directly acting on airway epithelial cells and, at least in part, explains the traditional use of Perilla frutescens as remedies for diverse inflammatory pulmonary diseases.

Tussilagone suppressed the production and gene expression of MUC5AC mucin via regulating nuclear factor-kappa B signaling pathway in airway epithelial cells

  • Choi, Byung-Soo;Kim, Yu-jin;Yoon, Yong Pill;Lee, Hyun Jae;Lee, Choong Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권6호
    • /
    • pp.671-677
    • /
    • 2018
  • In the present study, we investigated whether tussilagone, a natural product derived from Tussilago farfara, significantly affects the production and gene expression of airway MUC5AC mucin. Confluent NCI-H292 cells were pretreated with tussilagone for 30 min and then stimulated with EGF (epidermal growth factor) or PMA (phorbol 12-myristate 13-acetate) for 24 h or the indicated periods. The MUC5AC mucin gene expression was measured by RT-PCR. Production of MUC5AC mucin protein was measured by ELISA. To elucidate the action mechanism of tussilagone, effect of tussilagone on PMA-induced $NF-{\kappa}B$ signaling pathway was investigated by western blot analysis. Tussilagone significantly inhibited the production of MUC5AC mucin protein and down-regulated the expression of MUC5AC mucin gene, induced by EGF or PMA. Tussilagone inhibited PMA-induced activation (phosphorylation) of inhibitory kappa B kinase (IKK), and thus phosphorylation and degradation of inhibitory kappa Ba ($I{\kappa}B{\alpha}$). Tussilagone inhibited PMA-induced phosphorylation and nuclear translocation of nuclear factor kappa B ($NF-{\kappa}B$) p65. This, in turn, led to the down-regulation of MUC5AC protein production in NCI-H292 cells. These results suggest that tussilagone can regulate the production and gene expression of mucin by acting on airway epithelial cells through regulation of $NF-{\kappa}B$ signaling pathway.

Effects of Nodakenin, Columbianadin, and Umbelliferone Isolated from the Roots of Angelica decursiva on the Gene Expression and Production of MUC5AC Mucin from Human Airway Epithelial NCI-H292 Cells

  • Lee, Hyun Jae;Lee, Choong Jae
    • Natural Product Sciences
    • /
    • 제23권3호
    • /
    • pp.201-207
    • /
    • 2017
  • Angelica decursiva has been utilised as remedy for controlling the airway inflammatory diseases in folk medicine. We investigated whether nodakenin, columbianadin, and umbelliferone isolated from the roots of Angelica decursiva inhibit the gene expression and production of MUC5AC mucin from human airway epithelial cells. Confluent NCI-H292 cells were pretreated with nodakenin, columbianadin or umbelliferone for 30 min and then stimulated with epidermal growth factor (EGF), phorbol 12-myristate 13-acetate (PMA) or tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) for 24 h. The MUC5AC mucin gene expression was measured by reverse transcription - polymerase chain reaction (RT-PCR). Production of MUC5AC mucin protein was measured by enzyme-linked immunosorbent assay (ELISA). The results were as follows: (1) Nodakenin did not affect the expression of MUC5AC mucin gene induced by EGF, PMA or $TNF-{\alpha}$. Columbianadin inhibited the expression of MUC5AC mucin gene induced by EGF or PMA. However, umbelliferone inhibited the expression of MUC5AC mucin gene induced by EGF, PMA or $TNF-{\alpha}$; (2) Nodakenin also did not affect the production of MUC5AC mucin protein induced by EGF, PMA or $TNF-{\alpha}$. Columbianadin inhibited the production of MUC5AC mucin protein induced by PMA. However, umbelliferone inhibited the production of MUC5AC mucin protein induced by EGF, PMA or $TNF-{\alpha}$. These results suggest that, among the three compounds investigated, umbelliferone only inhibits the gene expression and production of MUC5AC mucin stimulated by various inducers, by directly acting on airway epithelial cells, and the results might explain the traditional use of Angelica decursiva as remedy for diverse inflammatory pulmonary diseases.

Effects of Lobetyolin, Lobetyol and Methyl linoleate on Secretion, Production and Gene Expression of MUC5AC Mucin from Airway Epithelial Cells

  • Yoon, Yong Pill;Ryu, Jiho;Park, Su Hyun;Lee, Hyun Jae;Lee, Seungho;Lee, Sang Kook;Kim, Ju-Ock;Hong, Jang-Hee;Seok, Jeong Ho;Lee, Choong Jae
    • Tuberculosis and Respiratory Diseases
    • /
    • 제77권5호
    • /
    • pp.203-208
    • /
    • 2014
  • Background: In this study, we investigated whether lobetyolin, lobetyol, and methyl linoleate derived from Codonopsis pilosula affect MUC5AC mucin secretion, production, and gene expression from airway epithelial cells. Methods: Confluent NCI-H292 cells were pretreated with lobetyolin, lobetyol, or methyl linoleate for 30 minutes and then stimulated with phorbol 12-myristate 13-acetate (PMA) for 24 hours. The MUC5AC mucin gene expression, and mucin protein production and secretion were measured by reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Results: Lobetyolin, lobetyol, and methyl linoleate inhibited the gene expression of MUC5AC mucin induced by PMA; lobetyolin did not affect PMA-induced MUC5AC mucin production. However, lobetyol and methyl linoleate inhibited the production of MUC5AC mucin; lobetyolin and lobetyol did not significantly affect PMA-induced MUC5AC mucin secretion from NCI-H292 cells. However, methyl linoleate decreased the MUC5AC mucin secretion. Conclusion: These results suggest that among the three compounds, methyl linoleate can regulate gene expression, production, and secretion of MUC5AC mucin by directly acting on the airway epithelial cells.

Relationship between Cancer Stem Cell Marker CD133 and Cancer Germline Antigen Genes in NCI-H292 Lung Cancer Cells

  • Ko, Taek Yong;Kim, Jong In;Lee, Sang Ho
    • Journal of Chest Surgery
    • /
    • 제53권1호
    • /
    • pp.22-27
    • /
    • 2020
  • Background: Previous studies have shown that lung cancer stem cells express CD133 and that certain cancer stem cells express cancer germline antigens (CGAs). The transcriptional regulation of CD133 is complicated and poorly understood. We investigated CD133 and CGA expression in a non-small cell lung cancer cell line. Methods: The expression levels of CD133 and CGAs (MAGE-6, GAGE, SSX, and TRAG-3) were measured in an NCI-H292 lung cancer cell line. The methylation status of the CD133 gene promoter region was analyzed. The expression levels and promoter methylation statuses of CD133 and CGAs were confirmed by treatment with the demethylating agent 5-aza-2'-deoxycytidine (ADC). Results: After treatment with ADC, CD133 expression was no longer detected. MAGE-6 and TRAG-3 were detected before ADC treatment, while GAGE and SSX were not detected. ADC treatment upregulated MAGE-6 and TRAG-3 expression, while GAGE expression was still undetected after treatment, and only weak SSX expression was observed. GAGE expression was not correlated with expression of CD133, while the levels of expression of MAGE-6, TRAG-3, and SSX were inversely correlated with CD133 expression. Conclusion: These results showed that CD133 expression can be regulated by methylation. Thus, the demethylation of the CD133 promoter may compromise the treatment of lung cancer by inactivating cancer stem cells and/or activating CGAs.

Apigenin and Wogonin Regulate Epidermal Growth Factor Receptor Signaling Pathway Involved in MUC5AC Mucin Gene Expression and Production from Cultured Airway Epithelial Cells

  • Sikder, Md. Asaduzzaman;Lee, Hyun Jae;Ryu, Jiho;Park, Su Hyun;Kim, Ju-Ock;Hong, Jang-Hee;Seok, Jeong Ho;Lee, Choong Jae
    • Tuberculosis and Respiratory Diseases
    • /
    • 제76권3호
    • /
    • pp.120-126
    • /
    • 2014
  • Background: We investigated whether wogonin and apigenin significantly affect the epidermal growth factor receptor (EGFR) signaling pathway involved in MUC5AC mucin gene expression, and production from cultured airway epithelial cells; this was based on our previous report that apigenin and wogonin suppressed MUC5AC mucin gene expression and production from human airway epithelial cells. Methods: Confluent NCI-H292 cells were pretreated with wogonin or apigenin for 15 minutes or 24 hours and then stimulated with epidermal growth factor (EGF) for 24 hours or the indicated periods. Results: We found that incubation of NCI-H292 cells with wogonin or apigenin inhibited the phosphorylation of EGFR. The downstream signals of EGFR such as phosphorylation of MEK1/2 and ERK1/2 were also inhibited by wogonin or apigenin. Conclusion: The results suggest that wogonin and apigenin inhibits EGFR signaling pathway, which may explain how they inhibit MUC5AC mucin gene expression and production induced by EGF.

Effect of Pyunkang-tang on Inflammatory Aspects of Chronic Obstructive Pulmonary Disease in a Rat Model

  • Seo, Hyo-Seok;Lee, Hyun Jae;Lee, Choong Jae
    • Natural Product Sciences
    • /
    • 제25권2호
    • /
    • pp.103-110
    • /
    • 2019
  • We investigated the anti-inflammatory effect of Pyunkang-tang extract (PGT), a complex herbal extract based on traditional Chinese medicine that is used in Korea for controlling diverse pulmonary diseases, on cigarette smoke-induced pulmonary pathology in a rat model of chronic obstructive pulmonary disease (COPD). The constituents of PGT were Lonicerae japonica, Liriope platyphylla, Adenophora triphilla, Xantium strumarinum, Selaginella tamariscina and Rehmannia glutinosa. Rats were exposed by inhalation to a mixture of cigarette smoke extract (CSE) and sulfur dioxide for three weeks to induce COPD-like pulmonary inflammation. PGT was administered orally to rats and pathological changes to the pulmonary system were examined in each group of animals through measurement of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interleukin-6 (IL-6) levels in bronchoalveolar lavage fluid (BALF) at 21 days post-CSE treatment. The effect of PGT on the hypersecretion of pulmonary mucin in rats was assessed by quantification of the amount of mucus secreted and by examining histopathologic changes in tracheal epithelium. Confluent NCI-H292 cells were pretreated with PGT for 30 min and then stimulated with CSE plus PMA (phorbol 12-myristate 13-acetate), for 24 h. The MUC5AC mucin gene expression was measured by RT-PCR. Production of MUC5AC mucin protein was measured by ELISA. The results were as follows: (1) PGT inhibited CSE-induced pulmonary inflammation as shown by decreased TNF-${\alpha}$ and IL-6 levels in BALF; (2) PGT inhibited the hypersecretion of pulmonary mucin and normalized the increased amount of mucosubstances in goblet cells of the CSE-induced COPD rat model; (3) PGT inhibited CSE-induced MUC5AC mucin production and gene expression in vitro in NCI-H292 cells, a human airway epithelial cell line. These results suggest that PGT might regulate the inflammatory aspects of COPD in a rat model.

15-Hydroxyeicosatetraenoic Acid Inhibits Phorbol-12-Myristate-13-Acetate-Induced MUC5AC Expression in NCI-H292 Respiratory Epithelial Cells

  • Song, Yong-Seok;Kim, Man Sub;Lee, Dong Hun;Oh, Doek-Kun;Yoon, Do-Young
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권5호
    • /
    • pp.589-597
    • /
    • 2015
  • It has been reported that overexpression of MUC5AC induced by excessive inflammation leads to airway obstruction in respiratory diseases such as chronic obstructive pulmonary disease and asthma. 15-Hydroxyeicosatetraenoic acid (15-HETE) has been reported to have anti-inflammatory effects, but the role of 15-HETE in respiratory inflammation has not been determined. Therefore, the aim of this study was to investigate the effects of 15-HETE on MUC5AC expression and related pathways. In this study, phorbol-12-myristate-13-acetate (PMA) was used to stimulate NCI-H292 bronchial epithelial cells in order to examine the effects of 15-HETE. 15-HETE inhibited PMA-induced expression of MUC5AC mRNA and secretion of MUC5AC protein. Moreover, 15-HETE regulated matrix metallopeptidase 9 (MMP-9), mitogen-activated protein kinase kinase (MEK), and extracellular signal-regulated kinase (ERK). In addition, 15-HETE decreased the nuclear translocation of specificity protein-1 (Sp-1) transcription factor and nuclear factor κB (NF-κB). Furthermore, 15-HETE enhanced the transcriptional activity of peroxisome proliferator-activated receptor gamma (PPARγ) as a PPARγ agonist. This activity reduced the phosphorylation of protein kinase B (PΚB/Akt) by increasing the expression of phosphatase and tensin homolog (PTEN). In conclusion, 15-HETE regulated MUC5AC expression via modulating MMP-9, MEK/ERK/Sp-1, and PPARγ/PTEN/Akt signaling pathways in PMA-treated respiratory epithelial cells.