• Title/Summary/Keyword: NC-machining

Search Result 416, Processing Time 0.02 seconds

CL-data Optimization of 5-axis Face-milling Via C-space and Effective-radius Map (C-space 및 유효반경-맵을 이용한 5축 페이스 밀링의 공구자세 최적화에 관한 연구)

  • 박정환;이정근
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.1
    • /
    • pp.34-41
    • /
    • 2002
  • Five-axis NC machining, in general, is utilized in fabricating impellers, turbine blades, marine propellers that can be machined more effectively rather than three-axis machining. There have been many researches concerning tool interference avoidance, optimization of tool orientation. The C-space or Configuration-space was originated from the robotics area, which depicts interference-free joint-values in motion planning. In the paper we propose an optimizing scheme by which the maximum effective-radius of a face-milling cutter can be achieved for each CC(cutter-contact) point. Also the concept of a C-space for a CC point, the effective-radius map for 5-axis face-milling, and some illustrative examples of marine propeller machining, are presented.

Machining for Outsole Mold of Shoes Using CAD/CAM (CAD/CAM을 이용한 구두창 금형 가공)

  • Park Yong-Bok;Yum Jeong-No;Hwang In-Keuk
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.1
    • /
    • pp.24-31
    • /
    • 2005
  • The outsole mold of the shoes has been manufactured using electro-discharge machining by graphite electrode or using casting etc. The study is concerned with the pattern design for the outsole of shoes by CAD, the modeling and the generation of NC data by CAM system and the machining by CNC machining center. The ball end mill and the engraving cutter is used as cutter and the cutting conditions are adjusted according to the shapes and sizes of the cutter and part in cutting. The method showed the possibility coping with the rapid change of shoes industry and proposed the possibility for higher productivity and quality on mold-manufacturing of shoes outsole.

A Study on 4-Axis Machining for Mono Pump Rotor (모노펌프 로터 4-축 가공에 관한 연구)

  • Cho, Hyun-Deog;Park, Jong-Bae;Wang, Si-Kuan;Heo, Yu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.3
    • /
    • pp.94-102
    • /
    • 2019
  • Mono pump rotors are widely used in wastewater treatment plants, medicine, cosmetics, paint, paper, and chemical manufacturing, dairy production, public works, agriculture, and so on. A mono pump comprises two main parts: the rotor and stator. Typically, the rotor is machined using an expensive whirling machine. In this study, we developed an algorithm for 4-axis machining of the rotor on machining center (MCT). NC-code was obtained by applying the algorithm and finally the rotor of the mono pump was machined on a 4-axis MCT. Results of four sample experimental works showed close agreement with design geometries.

Intelligent NURBS Surface Interpolation System with Embedded Online Tool-Path Planning (온라인 방식의 공구경로 계획을 내장한 지능형 NURBS 곡면 보간 시스템)

  • Koo, Tae-Hoon;Jee, Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.156-163
    • /
    • 2006
  • The purpose of this study is to improve the machining of free-formed NURBS surfaces using newly defined G-codes which can directly deal with shapes defined from CAD/CAM programs on a surface basis and specialize in rough and finish cut. To this purpose, a NURBS surface interpolation system is proposed in this paper. The proposed interpolation system includes online tool-path planning, real-time interpolation and feedrate regulation considering an effective machining method and minimum machining time all suitable for unit NURBS surface machining. The corresponding algorithms are simultaneously executed in an online manner. The proposed NURBS surface interpolation system is integrated and implemented with a PC-based 3-axis CNC milling system. A graphic user interface (GUI) and a 3D tool-path viewer which interprets the G-codes for NURBS surfaces and displays whole tool-paths are also developed and included in our real-time control system. The proposed system is evaluated through actual machining in terms of size of NC data, machining time, regulation of feedrate and cutting force focused on finish cut in comparison with the existing method.

Five-axis CL Data Generation by Considering Tool Swept Surface Model in Face Milling of Sculptured Surface (공구이동궤적 모델을 이용한 5축 페이스밀링 가공데이터 생성)

  • 이정근;박정환
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.1
    • /
    • pp.35-43
    • /
    • 2004
  • It is well known that the five-axis machining has advantages of tool accessibility and machined surface quality when compared with conventional three-axis machining. Traditional researches on the five-axis tool-path generation have addressed interferences such as cutter gouging, collision, machine kinematics and optimization of a CL(cutter location) or a cutter position. In the paper it is presented that optimal CL data for a face-milling cutter moving on a tool-path are obtained by incorporating TSS(tool swept surface) model. The TSS model from current CL position to the next CL position is constructed based on machine kinematics as well as cutter geometry, with which the deviation from the design surface can be computed. Then the next CC(cutter-contact) point should be adjusted such that the deviation conforms to given machining tolerance value. The proposed algorithm was implemented and applied to a marine propeller machining, which proved effective from a quantitative point of view. In addition, the algorithm using the TSS can also be applied to avoid cutter convex interferences in general three-axis NC machining.

A Study on Geometric Definition and 5-Axis Machining of End Mill with Insert Tip (Insert Tip용 End Mill 공구의 형상정의와 5-축 가공에 관한 연구)

  • 조현덕;박영원
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.6
    • /
    • pp.1-9
    • /
    • 2002
  • This study describes the geometric characteristics and the 5-axis machining method in order to make end mill cutter coming with insert tips. End mill geometry is consisted of flute part and insert tip part. Flute part modeled by using ruled surfaces with constant helix angle, and insert tip part modeled by rectangular planes containing tapped hole of specified direction in its center. In this study, the modeled insert tip part considered both of a radial rake angle and a axial rake angle, because they were important cutting conditions. In order to machining the virtual end mill defined from geometric characteristics, we programmed a special software to machining the end mill considered in this study. This software can generate NC-codes about following processes, end milling or ball end milling of flute part end milling of rectangular plane, centering of hole, drilling of hole, and tapping of hole. Ant sampled end mills were modeled and machined on 5-axis CNC machining center with two index tables. Since machined end mills were very agreeable to designed end mills, we saw that the method proposed in this study can be very useful for manufacturing of end mill body with insert tip.

A study on the development of CAM system for turning (선삭가공용 CAM 시스템의 개발에 관한 연구)

  • 양민양;이성찬;최종률;강성균
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.529-533
    • /
    • 1996
  • Recently, manufacturing industries are doing their best to increase productivity and to reduce production time. One of tile efforts is to develop user-friendly and effective CAM systems. For this purpose, a CAM system for turning was developed. In the developed system. user interacts with tile CAM system using graphical user interface (GUI) and manufacturing support functions to make NC programs effectively. Manufacturing support functions include cycle decoder. interference check be ween tool and workpicce. bar turning without air cut and dynamic/wireframe simulation. In the cycle decoder. basic options are provided to novices for their convenience. and advanced options are provided to help expert to modify the program using their knowledge. Interference check has been nil issue in tile CAM system for tuning. In this paper. when a user selects a tool. interference check between selected tools and workpieces is done automatically. Moreover. remaining shapes are calculated automatically. Then, tile CAM system requests user to input all additional tool and generates NC codes to cut tile remaining shapes. In bar turning of forged raw material, air cut should be prevented for effective machining. For this purpose, a new algorithm for bar turning was developed. Dynamic and wireframe simulation was used to verify the generated NC code.

  • PDF

A Study on the Cutting Characteristics of SCM440, SNCM21, STS 304 in Cryogenic Cutting(1st Report) (난삭재의 극저온절삭에서의 절삭 특성에 관한 연구)

  • Kim, Chill-Su;Oh, Sun-Sae;Lim, Young-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.44-53
    • /
    • 1994
  • We experimented on cutting characteristics-cutting force, behavior of cutting temprature, surface foughness, behavior of chips-under low tempdeature, which generated by liquid nitrogen (77K). The workpieces were freezed to -195 .deg. C and liquid nitrogen was also sprinkled on cutting area in order to increase the efficiency of machining in low temperature. The workpiece was became to -195 .deg. C in 5 minutes, and cutting temperature in CC was lower about 170 .deg. C than NC. The cutting force trended to increase slighty in cooled cutting, but chip thickness was decreased, shear angle was however increased. The form of chips was in good conditions of long or short tubular chips in CC. In CC surface roughness of workpiece was better than NC. In NC surface hardness of chips trended to increase according to increasing of cutting speed, but in CC it trended to decrease. The power spectrum of vertical cutting force trended to increase according to increasing of feed, and in CC it was higher than NC.

  • PDF

Automatic Tool Selection and Path Generation for NC Rough Cutting of Sculptured Surface (자유곡면의 NC 황삭가공을 위한 자동 공구 선정과 경로 생성)

  • Hong, Sung Eui;Lee, Kun woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.28-41
    • /
    • 1994
  • An efficient algorithm is proposed to select the proper tools and generate their paths for NC rough cutting of dies and molds with sculptured surfaces. Even though a milling process consists of roughing, semi-finishing, and finishing, most material is removed by a rough cutting process. Therfore it can be said that the rough cutting process occupy an important portion of the NC milling process, and accordingly, an efficient rough cutting method contributes to an efficient milling process. In order work, the following basic assumption is accepted for the efficient machining. That is, to machine a region bounded by a profile, larger tools should be used in the far inside and the region adjacent to relatively simple portion of the boundary while smaller tools are used in the regions adjacent to the relatively complex protion. Thus the tools are selected based on the complexity of the boundary profile adjacent to the region to be machined. An index called cutting path ratio is proposed in this work as a measure of the relative complexity of the profile with respect to a tool diameter. Once the tools are selected, their tool paths are calculated starting from the largest to the smallest tool.

  • PDF

Real-time Line Interpolation of a 2.3D Circular Arc based on the Acceleration and Deceleration of a Servo Motor (서보 모터의 가감속을 고려한 2.3차원 원호의 실시간 직선 보간)

  • Lee, Je-Phill;Lee, Cheol-Soo
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.399-404
    • /
    • 2001
  • In CNC machining, a 3D(3-dimension) linear segment and a 2D(2-dimension) circular arc are general forms given by CAD/CAM system. Generally, the 2D circular arc machining is processed using dividing into some linear segments. A 3D circular arc also don't exist in the standard form of NC data. This paper present a algorithm and method for real-time machining of a circular arc(not only the 2D one, but also the 3D one). The 3D circular arc machining is based on the 2D circular arc machining. It only needs making a new coordinate system, converting given 3D points(a start point, a end point, and a center point of a 3D circular arc) into points of the new coordinate system, and processing a inverse transformation about a interpolated point. The proposed algorithm was implemented and simulated on PC system. It was confirmed to give a gcod result.

  • PDF