• Title/Summary/Keyword: NBR

Search Result 203, Processing Time 0.017 seconds

Effect of Acrylonitrile-Butadiene Rubber on the Properties of Silica-Filled Styrene-Butadiene Rubber Compounds: Reduction of Silane Coupling Agent and Diphenylguanidine (실리카로 보강된 SBR 배합물의 특성에 미치는 NBR 효과: 실란커플링제와 DPG의 사용량 감소)

  • Choi, Sung-Seen;Chang, Dong-Ho;Kim, Ik-Sik
    • Elastomers and Composites
    • /
    • v.37 no.4
    • /
    • pp.217-223
    • /
    • 2002
  • Silica-filled rubber compounds show poor filler dispersion and slow cure characteristics compared to carbon black-filled ones. In general, a silica-filled rubber compound contains silane coupling agent (bis-(3-(triethoxysilyl)-propyl)-tetrasulfide, TESPT) and diphenylguanidine (DPG) to improve the filler dispersion and to make fast cure characteristics. Acrylonitrile-butadiene rubber (NBR) improves the filler dispersion in silica-filled styrene-butadiene rubber (SBR) compounds. In this study, effect of NBR on the properties of silica-filled SBR compounds was investigated. Properties of the compounds which contain NBR without DPG or with small amount of TESPT (Compound A) were compared with those of the compounds which contain TESPT and DPG without NBR (Compound B). Scorch time of Compound A is faster than those of Compound B. Modulus and tensile strength of Comound A are slightly lower than those of Compound B. Traction property of the Comound A is better than that of the Compound B. Addition of NBR leads to reduction of the used amount of TESPT and DPG.

Detection of Forest Fire and NBR Mis-classified Pixel Using Multi-temporal Sentinel-2A Images (다시기 Sentinel-2A 영상을 활용한 산불피해 변화탐지 및 NBR 오분류 픽셀 탐지)

  • Youn, Hyoungjin;Jeong, Jongchul
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1107-1115
    • /
    • 2019
  • Satellite data play a major role in supporting knowledge about forest fire by delivering rapid information to map areas damaged. This study, we used 7 Sentinel-2A images to detect change area in forests of Sokcho on April 4, 2019. The process of classify forest fire severity used 7 levels from Sentinel-2A dNBR(differenced Normalized Burn Ratio). In the process of classifying forest fire damage areas, the study selected three areas with high regrowth of vegetation level and conducted a detailed spatial analysis of the areas concerned. The results of dNBR analysis, regrowth of coniferous forest was greater than broad-leaf forest, but NDVI showed the lowest level of vegetation. This is the error of dNBR classification of dNBR. The results of dNBR time series, an area of forest fire damage decreased to a large extent between April 20th and May 3rd. This is an example of the regrowth by developing rare-plants and recovering broad-leaf plants vegetation. The results showed that change area was detected through the change detection of danage area by forest category and the classification errors of the coniferous forest were reached through the comparison of NDVI and dNBR. Therefore, the need to improve the precision Korean forest fire damage rating table accompanied by field investigations was suggested during the image classification process through dNBR.

Evaluation of the Normalized Burn Ratio (NBR) for Mapping Burn Severity Base on IKONOS-Images (IKONOS 화상 기반의 산불피해등급도 작성을 위한 정규산불피해비율(NBR) 평가)

  • Kim, Choen
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.195-203
    • /
    • 2008
  • Burn severity is an important role for rehabilitation of burned forest area. This factor led to the pilot study to determine if high resolution IKONOS images could be used to classify and delinenate the bum severity over burned areas of Samchock Fire and Cheongyang-Yesan Fire. The results of this study can be summarized as follows: 1. The modified Normalized Bum Ratio (NBR) for IKONOS imagery can be evaluated using burn severity mapping. 2. IKONOS-derived NBR imagery could provide fire scar and detail mapping of burned areas at Samchock fire and Cheongyang-Yesan Burns.

Fire-Induced Forest Disturbance Mapping by Using QuickBird Imagery (QuickBird 화상을 이용한 산불 삼림교란도 작성)

  • Kim, Choen
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.1
    • /
    • pp.85-94
    • /
    • 2009
  • This paper presents the capability to use QuickBird imagery for effects of forest disturbance in Okgye burned area. Particular attention of this paper deals with the NBR-derived mapping burn severity on QuickBird imagery to locate reliable rehabilitation(namely, secondary succession) over postfire surface. Comparisons of the mapping forest disturbance derived from QuickBird NBR data and the mapping burn severity derived from Landsat ${\Delta}NBR$ data show substantial agreement (KHAT value =0.7886). The method calculated from the correlation between QuickBird wetness and Landsat ETM+ band7 may have application to forest harvest disturbance.

Effect of Co-agent on Cure, Mechanical Properties of NBR Compounds in Peroxide System

  • Seo, Eun Ho;Kim, Gi Hong;Kim, Do Young;Lee, Dong Won;Seo, Kwan Ho
    • Elastomers and Composites
    • /
    • v.52 no.3
    • /
    • pp.187-193
    • /
    • 2017
  • In this study, the effect of the cure, mechanical properties, and oil resistance of NBR (acrylonitrile-butadiene rubber)/peroxide compounds were investigated for various co-agents. NBR compounds were characterized using a swelling test, a rheometer (MDR), and a compression set test. Mechanical properties were tested with original compounds, heated in air and exposed to the ASTM No.1, IRM 903 oil. NBR compounds were prepared using peroxide as the crosslinking agent. Trimethylolpropane trimethacrylate (TMPTMA), triallyl isocyanurate (TAIC), and 1,2-polybutadiene (HVPBD) were used as co-agents. The NBR compounds containing TMPTMA and HVPBD lowered the scorch time, while the addition of TAIC did not significantly change the scorch time. NBR compounds containing TMPTMA increased the crosslinking density, while the addition of TAIC and HVPBD lowered the crosslinking density. Moreover, the addition of TMPTMA improved the oil resistance of the NBR compound.

Effect of trans-octylene rubber(TOR) on the properties of NBR/EPDM rubber blends (Trans-octylene rubber(TOR)의 첨가가 NBR/EPDM 고무블렌드의 물성에 미치는 영향)

  • Shin, Yung-Sik;Chang, Young-Wook
    • Elastomers and Composites
    • /
    • v.35 no.2
    • /
    • pp.149-156
    • /
    • 2000
  • trans-octylene rubber(TOR) was melt-blended with an incompatible NBR/EPDM (70/30) blend. Mixing torque and temperature were reduced as TOR was added to the NBR/EPDM blend. Rheometer results indicated that TOR participated in vulcanization and became a part of network. A scanning electron micrograph demonstrated that EPDM was dispersed in NBR matrix in the blend and the addition of TOR led to a finer dispersion of EPDM particles. On the addition of TOR, the tensile strength, the tensile strain as well as the modulus of the blend vulcanizates increased. The ozone resistance of the blends determined in terms of critical stress-strain parameter was significantly enhanced in the blend as TOR was added. Improvements in the properties were believed to be associated with fine morphology and the increase in crosslink density due to the chain entanglement of the ternary blends.

  • PDF

Comparative Analysis between Normalized Burn Ration and Normalized Difference Vegetation Index in Forest Fire Damage Area (산불피해지역에서 정규산화율지수와 정규식생지수의 비교분석)

  • Choi Seung Pil;Park Jong Sun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.3
    • /
    • pp.261-268
    • /
    • 2004
  • Analysis on forest through satellite image data can be obtained from normalized burn ration (NBR) and normalized difference vegetation index (NDVI) from descriptive information of reflection on the earth's surface recorded each waveband. This study focuses on the efficiency of NBR through comparative analysis after obtaining NBR and NDVI of images form 1 you, 2 years and just after the forest fire and the time of forest-preserved of the area before the forest fire in Sacheon myeon, Cangneung City where the forest fro broke out. As a result, it shows dynamic changes with greater range that differences between NBR images rather than differences between NDVI images, which means it would be better to use NBR image for the analysis of the degrees of damages from forest fire or the status of vegetation restoration and also NBR image more distinctly shows both than NDVI image in forest fro damage area.

Recoverability analysis of Forest Fire Area Based on Satellite Imagery: Applications to DMZ in the Western Imjin Estuary (위성영상을 이용한 서부임진강하구권역 내 DMZ 산불지역 회복성 분석)

  • Kim, Jang Soo;Oh, Jeong-Sik
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.1
    • /
    • pp.83-99
    • /
    • 2021
  • Burn severity analysis using satellite imagery has high capabilities for research and management in inaccessible areas. We extracted the forest fire area of the DMZ (Demilitarized Zone) in the western Imjin Estuary which is restricted to access due to the confrontation between South and North Korea. Then we analyzed the forest fire severity and recoverability using atmospheric corrected Surface Reflectance Level-2 data collected from Landsat-8 OLI (Operational Land Imagery) / TIRS (Thermal Infrared Sensor). Normalized Burn Ratio (NBR), differenced NBR (dNBR), and Relative dNBR (RdNBR) were analyzed based on changes in the spectral pattern of satellite images to estimate burn severity area and intensity. Also, we evaluated the recoverability after a forest fire using a land cover map which is constructed from the NBR, dNBR, and RdNBR analyzed results. The results of dNBR and RdNBR analysis for the six years (during May 30, 2014 - May 30, 2020) showed that the intensity of monthly burn severity was affected by seasonal changes after the outbreak and the intensity of annual burn severity gradually decreased after the fire events. The regrowth of vegetation was detected in most of the affected areas for three years (until May 2020) after the forest fire reoccurred in May 2017. The monthly recoverability (from April 2014 to December 2015) of forests and grass fields was increased and decreased per month depending on the vegetation growth rate of each season. In the case of annual recoverability, the growth of forest and grass field was reset caused by the recurrence of a forest fire in 2017, then gradually recovered with grass fields from 2017 to 2020. We confirmed that remote sensing was effectively applied to research of the burn severity and recoverability in the DMZ. This study would also provide implications for the management and construction statistics database of the forest fire in the DMZ.

A Study on Estimation of Forest Burn Severity Using Kompsat-3A Images (Kompsat-3A호 영상을 활용한 산불피해 강도 산정에 관한 연구)

  • Minsun Yang;Min-A Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1299-1308
    • /
    • 2023
  • Forest fires are becoming more frequent and larger around the world due to climate change. Remote sensing such as satellite images can be used as an alternative or assistance data because it reduces various difficulties of field survey. Forest burn severity (differenced normalized burn ratio, dNBR) is calculated through the difference in normalized burn ratio (NBR) before and after a forest fire. The images used in the NBR formula are based on Landsat's near-infrared (NIR) and short-wavelength infrared (SWIR) bands. South Korea's satellite images don't have a SWIR band. So domestic studies related to forest burn severity calculated dNBR using overseas images or indirectly using the normalized difference vegetation index (NDVI) using South Korea's satellite images. Therefore, in this study, dNBR was calculated by substituting the mid-wavelength infrared (MWIR) band of Kompsat-3A (K3A) instead of the SWIR band in the NBR formula. The results were compared with the dNBR results obtained through Landsat which is the standard for dNBR formula. As a result, it was shown that dNBR using K3A's MWIR band has a wider range of values and can be expressed in more detail than dNBR using Landsat's SWIR band. Therefore, it is considered that K3A images will be highly useful in surveying burn areas and severity affected by forest fires. In addition, this study used the K3A's MWIR band images degraded to 30 m. It is considered that much better results will be obtained if a higher-resolution MWIR band is used.

Effect of Environmental Factors on the Properties of Polymeric Material : Oil and Ozone Reaction Time (고분자재료의 물성에 미치는 환경인자의 영향: 오일 및 오존반응시간)

  • 박찬영
    • Journal of Environmental Science International
    • /
    • v.9 no.6
    • /
    • pp.511-515
    • /
    • 2000
  • The purpose of this experiment is to prepare ethylene propylene diene terpolymer(EPDM)/ acrylonitrile butadiene rubber(NBR) blend which represents good environmental resistant properties including favorable oil and ozone resistance. With incorporation of EPDM, NBR and other ingredients, the rubber and chemical additives were mixed by mechanical method such as Banbury mixer and open 2-roll mill. Then rubber vulcanizates were manufactured by hot press and mechanical properties, oil and ozone resistance of the test specimens were measured. The oil resistance and ozone resistance of EPDM and NBR, respectively, is remarkably improved by blending EPDM with NBR. The optimum results of oil and zone resistant characteristics were obtained at EPDM/NBR(=25/75 wt%) composition ratio.

  • PDF