• Title/Summary/Keyword: NBIS stability

Search Result 6, Processing Time 0.02 seconds

Atomic Layer Deposited ZrxAl1-xOy Film as High κ Gate Insulator for High Performance ZnSnO Thin Film Transistor

  • Li, Jun;Zhou, You-Hang;Zhong, De-Yao;Huang, Chuan-Xin;Huang, Jian;Zhang, Jian-Hua
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.669-677
    • /
    • 2018
  • In this work, the high ${\kappa}$ $Zr_xAl_{1-x}O_y$ films with a different Zr concentration have been deposited by atomic layer deposition, and the effect of Zr concentrations on the structure, chemical composition, surface morphology and dielectric properties of $Zr_xAl_{1-x}O_y$ films is analyzed by Atomic force microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and capacitance-frequency measurement. The effect of Zr concentrations of $Zr_xAl_{1-x}O_y$ gate insulator on the electrical property and stability under negative bias illumination stress (NBIS) or temperature stress (TS) of ZnSnO (ZTO) TFTs is firstly investigated. Under NBIS and TS, the much better stability of ZTO TFTs with $Zr_xAl_{1-x}O_y$ film as a gate insulator is due to the suppression of oxygen vacancy in ZTO channel layer and the decreased trap states originating from the Zr atom permeation at the $ZTO/Zr_xAl_{1-x}O_y$ interface. It provides a new strategy to fabricate the low consumption and high stability ZTO TFTs for application.

Improvement in Bias Stability of Amorphous IGZO Thin Film Transistors by High Pressure H2O2 Annealing

  • Song, Ji-Hun;Kim, Hyo-Jin;Han, Yeong-Hun;Baek, Jong-Han;Jeong, Jae-Gyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.231.2-231.2
    • /
    • 2014
  • 훌륭한 전기적 특성을 갖는 ZnO 기반의 산화물 반도체 박막트랜지스터(TFT)는 AMOLEDs에 적용될 수 있다. 하지만 이러한 장점에도 불구하고 산화물 반도체 TFT소자에 전압이 인가되었을 때 문턱 전압이 이동하게 되는 안정성 문제를 갖는다. 따라서 이를 해결하기 위한 연구가 널리 진행 되고 있다. 본 연구소에서는 고압 분위기 열처리를 통해 안정성의 원인으로 작용할 수 있는 산소공공(Oxygen vacancy)을 감소시키는 연구를 진행하였다. 산화물 반도체 TFT소자의 안정성을 향상시키는 대표적인 분위기 열처리로는 산소 고압 열처리(HPA)가 있으며, 또한 H2O 기체를 사용한 열처리를 통해 TFT소자의 안정성을 높일 수 있다는 연구 결과가 보고된 바 있다. 본 연구에서는 IGZO TFT소자에 H2O보다 더 큰 반응성을 갖는 산화제인 H2O2 기체를 사용한 HPA를 통해 positive bias stress(PBS) 및 negative bias illumination stress(NBIS) 조건에서 안정성이 향상됨을 확인하였고 이를 H2O 기체를 사용한 경우와 비교하였다. 그 결과 H2O2 기체를 산화제로 사용할 때 기존 H2O 기체에 비해 효과적인 PBS 및 NBIS 신뢰성 개선을 확인하였다.

  • PDF

The Properties of RF Sputtered Zinc Tin Oxide Thin Film Transistors at Different Sputtering Pressure (스퍼터 증착된 Zinc Tin Oxide 박막 트랜지스터의 공정 압력에 따른 특성 연구)

  • Lee, Hong Woo;Yang, Bong Seob;Oh, Seungha;Kim, Yoon Jang;Kim, Hyeong Joon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.1
    • /
    • pp.43-49
    • /
    • 2014
  • Zinc-tin oxides (ZTO) thin film transistors have been fabricated at different process pressure via re sputtering technique. TFT properties were improved by depositing channel layers at lower pressure. From the analysis of TFTs comprised of multi layer channel, deposited consecutively at different sputtering pressure, it was suggested that the electrical characteristics of TFTs were mainly affected by interfacial layer due to their high conductance, however, the stability under the NBIS condition was influenced by whole bulk layer due to low concentration of positive charges, which might be generated by the oxygen vacancy transition, from Vo0 to $Vo^{2+}$. Those improvements were attributed to increasing sputtered target atoms and decreasing harmful effects of oxygen molecules by adopting low sputtering pressure condition.

Investigation of bias illumination stress in solution-processed bilayer metal-oxide thin-film transistors

  • Lee, Woobin;Eom, Jimi;Kim, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.302.1-302.1
    • /
    • 2016
  • Solution-processed amorphous metal-oxide thin-film transistors (TFTs) are considered as promising candidates for the upcoming transparent and flexible electronics due to their transparent property, good performance uniformity and possibility to fabricate at a low-temperature. In addition, solution processing metal oxide TFTs may allow non-vacuum fabrication of flexible electronic which can be more utilizable for easy and low-cost fabrication. Recently, for high-mobility oxide TFTs, multi-layered oxide channel devices have been introduced such as superlattice channel structure and heterojunction structure. However, only a few studies have been mentioned on the bias illumination stress in the multi- layered oxide TFTs. Therefore, in this research, we investigated the effects of bias illumination stress in solution-processed bilayer oxide TFTs which are fabricated by the deep ultraviolet photochemical activation process. For studying the electrical and stability characteristics, we implemented positive bias stress (PBS) and negative bias illumination stress (NBIS). Also, we studied the electrical properties such as field-effect mobility, threshold voltage ($V_T$) and subthreshold slop (SS) to understand effects of the bilayer channel structure.

  • PDF

Effect of Hydrogen in the Gate Insulator on the Bottom Gate Oxide TFT

  • KoPark, Sang-Hee;Ryu, Min-Ki;Yang, Shin-Hyuk;Yoon, Sung-Min;Hwang, Chi-Sun
    • Journal of Information Display
    • /
    • v.11 no.3
    • /
    • pp.113-118
    • /
    • 2010
  • The effect of hydrogen in the alumina gate insulator on the bottom gate oxide thin film transistor (TFT) with an InGaZnO film as the active layer was investigated. TFT with more H-containing alumina films (TFT A) fabricated via atomic layer deposition using a water precursor showed higher stability under positive and negative bias stresses than that with less H-containing alumina deposited using ozone (TFT B). While TFT A was affected by the pre-vacuum annealing of GI, which resulted in $V_{th}$ instability under NBS, TFT B did not show a difference after the pre-vacuum annealing of GI. All the TFTs showed negative-bias-enhanced photo instability.

IGZO TFT Stability Improvement Based on Various Passivation Materials (다양한 Passivation 물질에 따른 IGZO TFT Stability 개선 방법)

  • Kim, Jaemin;Park, Jinsu;Yoon, Geonju;Cho, Jaehyun;Bae, Sangwoo;Kim, Jinseok;Kwon, Keewon;Lee, Youn-Jung;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.1
    • /
    • pp.6-9
    • /
    • 2020
  • Thin film transistors (TFTs) with large-area, high mobility, and high reliability are important factors for next-generation displays. In particular, thin transistors based on IGZO oxide semiconductors are being actively researched for this application. In this study, several methods for improving the reliability of a-IGZO TFTs by applying various materials on a passivation layer are investigated. In the literature, inorganic SiO2, TiO2, Al2O3, ZTSO, and organic CYTOP have been used for passivation. In the case of Al2O3, excellent stability is exhibited compared to the non-passivation TFT under the conditions of negative bias illumination stress (NBIS) for 3 wavelengths (R, G, B). When CYTOP passivation, SiO2 passivation, and non-passivation devices were compared under the same positive bias temperature stress (PBTS), the Vth shifts were 2.8 V, 3.3 V, and 4.5 V, respectively. The Vth shifts of TiO2 passivation and non-passivation devices under the same NBTS were -2.2 V and -3.8 V, respectively. It is expected that the presented results will form the basis for further research to improve the reliability of a-IGZO TFT.