• Title/Summary/Keyword: NATM lining

Search Result 71, Processing Time 0.026 seconds

Effect of Shotcrete Lining Adherence on Load Carrying Capacity of Lining (숏크라트 라이닝 층간 부착성이 라이닝의 하중지지력에 미치는 영향)

  • Yoo, Chung-Sik;Kim, Sun-Bin;Bae, Gyu-Jin;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.1
    • /
    • pp.41-51
    • /
    • 2006
  • This paper concerns the effect of lining interface adherence on the lining's load carrying capacity. A series of reduced scale laboratory tests and finite element anlayses were carried out with the aim of gaining insight into the effect of shotcrete lining adherence on the load carrying capacity of double shell lining. The results indicated among other things that the load carrying capacity of a double shell tunnel is significantly affected by the adherence between layers. Also revealed was that for cases with low lining layer adherence stress concentration may occur due to relative movement between the lining layers with this trend being more pronounced with increasing tunnel cover depth. Practical implications from the results of this study are discussed in great detail.

  • PDF

A Study for Concrete Crack Minimize Methods in Large Section Tunnel Lining (라이닝 시공특성을 고려한 대단면 4차로 터널 균열최소화 방안에 대한 연구)

  • Choo, Seok-Yeon;Lee, Jae-Sung;Koh, Sung-Yil;Kim, Sang-Whang;Ra, Kyong-Woong;Kim, Tae-Hyok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.621-628
    • /
    • 2005
  • The concrete lining in tunnel performs structural and nonstructural functions. The concrete lining works as a structural member for released load and residual water pressure in NATM tunnel system. Also concrete lining used for finishing the tunnel surface. The initial crack of concrete lining is reported because of difficulties in construction process, which concrete is injected into 30$\sim$40cm narrow gap between lining form and tunnel surface through 500${\times}$600mm small injection holes in the form. In this paper, we research a reason of initial crack occurrence by the case study of 4 lane wide span tunnel, and propose an improved method for crack minimization in construction process. We verify that the proposed method can give qualified concrete lining by carrying out the concrete injection model test and the numerical analysis of concrete flow.

  • PDF

Analysis of Environmental Load by Work Classification for NATM Tunnels (NATM터널의 공종별 환경부하 특성 분석)

  • Lee, Ju-hyun;Shim, Jin Ah;Kim, Kyong Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.2
    • /
    • pp.307-315
    • /
    • 2016
  • Many countries are trying to reduce a greenhouse gas to step up their fight against climate change. There are many studies related to building only for reducing a greenhouse gas in construction area but studies related to reducing a comprehensive environmental load including various pollutants that affects the global environment are lacking. This study aims to analyse the characteristics of environmental load by work type for tunnel projects. Analysis showed that seven work types, including lining concrete, shotcrete, tunnel portal and open-cut tunnel work, etc., are representative works generated environmental load. These seven works represent 89.22 percent of total environmental load. In addition, comparison results of environmental load per tunnel's length by work type showed that a major factor of environmental load is caused by a tunnel portal and open-cut tunnel work with relatively short length (excavation length). And lining concrete and shotcrete work are larger than any other environmental load with tunnel's total length. It is expected that the result of this study will be used to make a estimation model for environmental load using approximate quantity survey of representative work types in the early stage of tunnel design. And it will be play a considerable role in establishing of environment management plan for sustainable infrastructure construction.

A Study on the Seismic Performance Evaluation and the Seismic Analysis Method for Pre-Cast Concrete Lining (조립식 터널 라이닝(PCL)의 내진성능 평가 및 해석기법에 대한 고찰)

  • 정형식;배규진;이용준
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.5
    • /
    • pp.197-207
    • /
    • 2001
  • 1980년대 이래 국내 터널의 시공법은 원지반의 강성을 활용한 NATM이 주를 이루고 있다. 그러나 NATM은 터널내부에 설치되는 내부라이닝의 여러 가지 문제점을 내포하고 있기 때문에 노르웨이에서는 조립식 터널 라이닝(Pre-Cast Concrete Lining, PCL)을 개발하여 현장타설 콘크리트 라이닝의 문제점을 해결하고자 하였다. 그러나 노르웨이와 같은 북유럽지역에서는 지진이 거의 발생되지 않고 있기 때문에 PCL공법 개발당시에 지진에 대한 영향을 고려하지 못하였다. 따라서 PCL공법을 국내에 도입하기 위해서는 먼저 지진에 대한 영향을 분석하여야 할 것으로 판단되므로 본 연구에서는 PCL공법 적용시 지진에 대한 안정성 평가 및 합리적 내진해석을 위한 연구를 수행하고자 하였다. PCL의 내진성능을 판단하기 위하여 먼저 국내에서 주로 많이 사용되고 있는 해석기법인 유사정적해석법과 응답스펙트럼해석법을 이용하여 분석하였으며 지반과 구조물의 상호작용에 대한 영향을 분석하기 위해 시간이력해석을 수행하여 터널심도별 PCL의 내진성능을 분석하였다. 이와 같은 방법으로 PCL의 내진해석을 수행한 결과, 부재에 발생된 응력이 허용응력 이내에서 발생되어 PCL의 내진성능을 확보된 것으로 판단된다. 또한 시간이력해석에 의한 지반-구조물 해석을 수행한 결과에 의하면 PCL의 내진성능을 확보하기 위한 터널의 최소 토피고가 터널직경에 2배 이상인 것으로 확인되었다. 또한 단순 구조물의 내진해석만으로는 PCL의 내진성능을 과소평가할 우려가 있는 것으로 나타났다.

  • PDF

Development of High Performance Shotcrete for Permanent Shotcrete Tunnel Lining(I : Application of New Type Accelerator for High Strength Shotcrete) (Permanent Shotcrete Tunnel Lining 구축을 위한 고성능 숏크리트 개발( I : 고강도 숏크리트 개발을 위한 새로운 급결제 적용))

  • 박해균;이명섭;김재권;안병제
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.1023-1030
    • /
    • 2002
  • From the early 1980s, the New Austrian Tunnelling Method (NATM) has been developed as a one of the standard tunneling method in Korea. Approximately 10 years ago, wet-mix shotcrete with sodium silicate accelerator (waterglass) was introduced and widely used to tunnel lining and underground support. However, this accelerator had some disadvantages due to the decrease of long-term strength compared to plain concrete (without accelerator) and low quality of the hardened shotcrete. In order to compensate for these disadvantages, recently developed alkali-free accelerator has been successfully demonstrated in numerous projects and applications as a new material to make tunnels more durable and safer. An experimental investigation was carried out in order to verify the strength behavior of wet-mix Steel Fiber Reinforced Shotcrete (SFRS) with alkali-free accelerator. Compressive strength, flexural strength and equivalent flexural strength were measured by testing specimens extracted from the shotcrete panels. From the results, wet-mix SFRS with alkali-free accelerator exhibited excellent strength improvement compared to the conventional shotcrete accelerator.

  • PDF

Convergence-confinement method of a tunnel with the consideration of seepage forces (침투력을 고려한 터널의 내공변위 제어 미케니즘)

  • Lee, In-Mo;Yoo, Seung-Youl;Nam, Seok-Woo;Shin, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.3
    • /
    • pp.187-195
    • /
    • 2005
  • When a tunnel is excavated below groundwater table, the groundwater flow occurs towards the tunnel resulting in the seepage pressure. In this paper, the effect of groundwater flows on the behavior of shotcrete lining installed between ground-liner interfaces was studied considering permeability ratio between the ground and the shotcrete into account. Three-dimensional coupled finite element analysis was performed for this assessment. Seepage forces will seriously affect the shotcrete behavior since arching phenomena do not occur in seepage forces. A parametric study was conducted on the various tunnelling situations including interfacial properties between ground and shotcrete lining, the shape of tunnel cross-section and the thickness of liner, etc. Moreover, the convergence-confinement method (CCM) of a NATM tunnel considering seepage forces was proposed. The result showed that the more water tight is the shotcrete, the smaller is the convergence and the larger is the internal pressure. Therefore, the watertight fiber-reinforced shotcrete is found to be even more advantageous when used in under water tunnel.

  • PDF

Tensile strength evaluation of SFRC subjected to high temperature using double punch test (DPT 실험을 이용한 고온노출된 강섬유보강콘크리트의 인장강도 평가)

  • Moon, Do-Young;Chang, Soo-Ho;Bae, Gyu-Jin;Lee, Gyu-Pil;Kim, Hee-Sung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 2013
  • Steel fiber-reinforced concrete (SFRC) is widely used for tunnel lining structure such as shot-crete in NATM tunnel and segment in TBM tunnel. In tunnel fire accidents, structural performance of a lining is very important because the lining is the structure that directly exposed to fire. In this study, the effects of high temperatures, mix ratios and types on failure pattern, DPT tensile strength and coefficient of variation were investigated through Double Punch Tests (DPT) of SFRC subjected to high temperatures. In the results, it is confirmed that the residual DPT tensile strength increases as for SFRC and this is more in SFRC with higher mix ratio. But, the equation for evaluation of DPT tensile strength does not involve the number of failure surfaces SFRC specimens subjected to high temperatures, therefore, it is required to investigate more fracture energy in DPT tests.

An Experimental Study on the Effect of Malfunctioning of Drainage System on NATM Tunnel Linings (NATM 터널의 배수시스템 수리기능저하가 터널 라이닝에 미치는 영향)

  • Shin, Jong-Ho;Kwon, Oh-Yeob;Shin, Yong-Suk;Yang, Yu-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.77-84
    • /
    • 2007
  • One of the most sensitive design specifications to be considered is infiltration and external pore-water pressures on underground structure construction. Development of pore-water pressure may accelerate leakage and consequently cause deterioration of the lining. In this paper, the development of pore-water pressure due to malfunctioning of drainage system and its potential effect on the linings are investigated using physical model tests. The deterioration procedure was simulated by controlling both permeability and flow rate. Development of pore-water pressure was monitored on the lining using pore pressure measurement cells. Test results identified the mechanism of pore-water pressure development on the tunnel lining. In addition, they showed that controlling flow rate is more effective method fur simulating deterioration procedure than permeability control. The laboratory model tests were reproduced using coupled numerical method, and showed that the effect of deterioration of drainage system can be theoretically expected using coupled numerical modeling method.

Reinforcement of Shotcrete Lining on the Side Wall of Tunnel in Enlargement of Existing ASSM Road Tunnel (측벽부 숏크리트 보강에 의한 재래식 도로터널 단면확대)

  • Kim, Donggyou;Shin, Youngwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.12
    • /
    • pp.81-89
    • /
    • 2012
  • The existing tunnel in urban area can be enlarged because of requirement of road-widening by traffic growth. The protector with rectangular cross section can be set up in the tunnel, which will be constructed for enlargement of width, to solve traffic jam around the tunnel. It is impossible to install the rockbolt in the lower area of tunnel due to a limited space between the protector and cutting surface. The objective of this study is to suggest the method of shotcrete thickness increase instead of rockbolt installation in the side wall of tunnel for the stability of tunnel. Numerical analysis was performed to evaluate displacement at the crown of tunnel, convergence of tunnel, and stress in shotcrete lining in 3-lane and 4-lane NATM tunnels enlarged from 2-lane conventional tunnel. There were three types of analysis condition, rockbolt installation, no rockbolt installation, and increase of shotcrete thickness without rockbolt in the side wall of tunnel. There was no difference on the displacement at the crown and the convergence of upper tunnel. In the lower tunnel, the convergence in case of no rockbolt installation was larger as maximum 1.3mm than that in case of rockbolt installation. The stress in shotcrete lining in case of no rockbolt installation was larger as maximum 1.3MPa than that in case of rockbolt installation. Numerical analysis was performed to compare the behavior of shotcrete with rockbolt with that of shotcrete, which its thickness was increased, without rockbolt. The shotcrete has an increase of 20%(250mm ${\rightarrow}$ 300mm, 4-lane tunnel)~25%(200mm ${\rightarrow}$ 250mm, 3-lane tunnel) in its thickness to reduce the stress in shotcrete lining. The behavior of shotcrete lining increased the shotcrete thickness by 20%~25% was similar to that of existing shotcrete lining with rockbolt.

Capacity-spectrum push-over analysis of rock-lining interaction model for seismic evaluation of tunnels

  • Sina Majidian;Serkan Tapkin;Emre Tercan
    • Earthquakes and Structures
    • /
    • v.26 no.5
    • /
    • pp.327-336
    • /
    • 2024
  • Evaluation of tunnel performance in seismic-prone areas demands efficient means of estimating performance at different hazard levels. The present study introduces an innovative push-over analysis approach which employs the standard earthquake spectrum to simulate the performance of a tunnel. The numerical simulation has taken into account the lining and surrounding rock to calculate the rock-tunnel interaction subjected to a static push-over displacement regime. Elastic perfectly plastic models for the lining and hardening strain rock medium were used to portray the development of plastic hinges, nonlinear deformation, and performance of the tunnel structure. Separately using a computational algorithm, the non-linear response spectrum was approximated from the average shear strain of the rock model. A NATM tunnel in Turkey was chosen for parametric study. A seismic performance curve and two performance thresholds are introduced that are based on the proposed nonlinear seismic static loading approach and the formation of plastic hinges. The tunnel model was also subjected to a harmonic excitation with a smooth response spectrum and different amplitudes in the fully-dynamic phase to assess the accuracy of the approach. The parametric study investigated the effects of the lining stiffness and capacity and soil stiffness on the seismic performance of the tunnel.