• Title/Summary/Keyword: NATM 터널 공법

Search Result 88, Processing Time 0.024 seconds

The control method for axial cracks on NATM tunnel linings (NATM 터널라이닝 종방향 균열 제어공법)

  • Zheng, Xiu-Mei;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.4
    • /
    • pp.437-447
    • /
    • 2009
  • It is easily found by several references of NATM that the cracks on the lining concrete of NATM are more developed than those of the conventional tunnel methods. Based on the results of research, the new method is proposed to control and protect the axial cracks on the tunnel linings. Also, the efficiency of proposed method is evaluated using the Distinct Element Method.

Study on Applicability of NATM Composite Lining Method (NATM Composite 라이닝 공법의 적용성 연구)

  • Ma, Sang-Joon;Kang, Eun-Gu;Kim, Dong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.12
    • /
    • pp.69-84
    • /
    • 2011
  • This paper presents the applicability of NATM Composite Lining method in domestic tunnel construction sites. Firstly, in order to produce high quality PC Panel, optimal steam curing condition is reviewed. And in preparation for fire inside the tunnel, the fire-resistance test of PC Panel is carried out. The constructability of NATM Composite Lining method and the drainage ability of light-weight foamed mortar is also evaluated through field construction test. And PC Panel combination program is developed to calculate the quantity of PC Panel efficiently. Besides, economic evaluation for NATM Composite Lining method is conducted. From this research, it is clearly found that NATM Composite Lining method is applicable to domestic tunnel construction site.

The Case of Measurement for Shallow Soil Tunnel with Pre-Supported Nail Method (저토피 토사터널에 적용된 선지보 네일공법의 시공 및 계측사례)

  • Seo, Dong-Hyun;Lee, Seung-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.11
    • /
    • pp.69-79
    • /
    • 2012
  • This pre-supported nail method is able to decrease ground displacements more than NATM because this method reinforces ground with grouted steels before tunnel excavation. Therefore this method has advantage of being able to increase the stability and workability. This study presents applicability of pre-supported nail method with case of site measurement for shallow tunnel composed with high groundwater level and unconsolidated soil, performs this research the mechanism of new supporting system is compared with the conventional existing supporting system in terms of soil reinforcement. NATM has characteristics that construction stage displacement of the apparent height difference is observed in the step of divided excavation processing. Otherwise it is analyzed that pre-supported nail method is not sensitive in the displacement problem of excavation processing in comparison to NATM. It is found that this method is very applicable in shallow depth tunnel such as portal area, tunnel in soil and weak zone without arching effect.

A Study on Ground Behavior during Tunnel Excavation (터널 굴착시 지반거동에 관한 연구)

  • 신종호;유태성
    • Geotechnical Engineering
    • /
    • v.1 no.1
    • /
    • pp.31-46
    • /
    • 1985
  • An extensive program of tunnel instrumentation has been Implemented in the construction of the Seoul Subway Line 3 and 4, in which the NATM was adopted as the main tunnelling technique. Among more than ten instrumented sections in the downtown area, five representative test sections were selected for analysis in this study, with an emphasis on the surface settlement and crown settlement. Variations of the surface and crown settlement. Variations of the governing factors, such as ground conditions, tunnel geometry, and construction conditions are described in this paper. Possible mechanisms for ground deformations occurring at different stages of tunnel construction are formulated, based on overall interpretation of the field observations and data obtained.

  • PDF

Comparative risk analysis of NATM and TBM for mixed-face large-diameter urban tunneling (도심지 대단면 복합지반 NATM 과 TBM 터널공법의 비교위험도 분석)

  • Kim, Young-Geun;Moon, Joon-Shik;Shim, Jai-Beom;Lee, Seung-Bok;Choi, Chang-Rim;Chun, Youn-Chul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.1
    • /
    • pp.19-32
    • /
    • 2011
  • The risk assessment is essential for tunnel design in order to minimize risks associated with uncertainty about geological conditions and tunneling method. This paper provides a comparative risk analysis of a large single bore TBM driven tunnel against sequentially excavated NATM tunnel for a mixed-face large-diameter urban tunnel project near or under a river. The focus of this assessment is on the risks associated with the tunnel excavation methods, in particular whether a TBM or NATM presents more or less risk to achieve the planned excavation duration and bring the project within the estimated bid price. First, the impacts and risks to tunnel construction under each method were discussed, and the risks were scored and ranked in the order of perceived severity and likelihood. Finally, the assessment from a risk based perspective was conducted to decide which alternate tunneling method is more likely to deliver the project with the least time and cost. It is very important to note that this study is only applied to this tunnel project with specific geological conditions and other contract requirements.

A study on the improvement of the protective shield construction method and explosion-proof tube performance for tunnel blasting (터널 발파에 대한 방호쉴드 공법 및 방폭튜브 성능 개선 연구)

  • Sang-Hwan Kim;Soo-Jin Lee;Jung-Nam Kwon;Dong-gyun Yoo;Yong-Woo Kim;Kwang-Eun Cho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.4
    • /
    • pp.285-303
    • /
    • 2023
  • Interest in building underground spaces is increasing for the creation of downtown infrastructure and efficient space utilization. A representative method of utilizing underground space is a tunnel, and in addition to road tunnels, the construction of utility tunnels such as power conduits and utility conduits is gradually increasing. The current basic tunnel construction method can be divided into NATM (New Austrian Tunnelling Method) and TBM (Tunnel Boring Machine). The NATM is a reliable method, but it is accompanied by vibration and noise due to blasting. In the case of the TBM excavation method, there are disadvantages in terms of construction period and construction cost, but it is possible to improve economic feasibility by introducing appropriate complementary methods. In this study, a blasting method was develop using the NATM after TBM pre-excavation using the protective shield method. This is a method that compensates for the disadvantages of each tunnel construction method, and is expected to reduce construction costs, blasting vibration, and noise. In order to review the performance of the developed method, an experiment was conducted to evaluate the performance of explosion-proof tube to which a protective shield scale model was applied, and the impact of blasting vibration of the protective shield method was analyzed.

A Study on Disaster Influencing Factors and Importance for Safety Management in NATM Tunnel Drilling (NATM 터널 굴진 시 안전관리를 위한 재해영향요인 및 중요도에 관한 연구)

  • Lee, YoungSoo;Yoon, Younggeun;Oh, Taekeun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.757-763
    • /
    • 2022
  • In the NATM tunnel construction method for urban subway and underpass construction, various causes of disaster exist. In this study, in order to analyze the importance of disaster influencing factors during NATM tunnel excavation, the possible risk factors were analyzed through prior research such as drilling, charging and blasting, It was divided into the work items of wrinkle treatment, pumice cleanup, and support materials. Next, the final 21 detailed measurement indicators were selected through the FGI survey of related experts, and AHP (Analytic Hierarchy Process) analysis were conducted. As a result, it was found that the workers involved in the tunnel construction were the most influential disaster influencing factor.

Comparison of Carbon Emissions between the TBM Method and the NATM Method through LCA Analysis (LCA 분석을 통한 TBM 공법과 NATM 공법의 탄소배출량 비교 연구)

  • Tae-Su Jang;Jae-Soon Khau;Jin-Hyuk Song;Nam-Sun Hwang
    • Explosives and Blasting
    • /
    • v.41 no.4
    • /
    • pp.9-16
    • /
    • 2023
  • To compare the global warming impact of the TBM and NATM method, which are representative tunnel excavation methods, a life cycle assessment was performed for each method. Life cycle assessment should compare the sum of carbon emissions by considering the pre-manufacturing stage, product manufacturing stage, usage stage, and disposal stage. However, access to TBM (Tunnel Boring Machine) manufacturing and disposal data is limited, so I had no choice but to focus on the analysis for the usage stage. In general, carbon emissions during the pre-product manufacturing stage and product manufacturing stage often exceed 90% of carbon emissions throughout the entire process. Therefore, since it is difficult to achieve the analysis goal only by comparing the usage stage, the analysis scope was expanded, and carbon emissions for the process were calculated for the NATM method with access to manufacturing data. As a result of comparing the relative impact on global warming, the carbon emissions of the TBM method were found to be higher than those of the NATM method even though TBM method was only considered for the usage stage. So there it is, the NATM method can be seen as environmentally friendly in the future when considering the impact of climate change (global warming), which has recently attracted attention among environmental impact fields.

A risk management system applicable to NATM tunnels: methodology development and application (NATM 터널의 리스크 관리 시스템 개발 및 현장적용)

  • Chung, Heeyoung;Lee, Kang-Hyun;Kim, Byung-Kyu;Lee, In-Mo;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.2
    • /
    • pp.155-170
    • /
    • 2020
  • In this paper, a risk management system applicable to NATM tunneling projects is proposed. After investigating case histories in NATM tunnel collapse, this paper analyzes the potential risk factors and their corresponding risk events during NATM tunnel construction. The risk factors are categorized into three groups: geological, design and construction risk factors. The risk events are also categorized into four types: excessive deformation, excessive deformation with subsidence, collapse inside tunnels, and collapse inside tunnels with subsidence. The paper identifies risk scenarios in consideration of the risk factors and proposes a risk analysis/evaluation method for the NATM tunnel risk scenarios. Based on the evaluation results, the optimal mitigation measure to handle the risk events is suggested. In order to effectively facilitate a series of risk management processes, it is necessary to develop a risk register and a management ledger for risk mitigation measures that are customized to NATM tunnels. Lastly, the risk management for an actual NATM tunnel construction site is performed to verify the validity of the proposed system.

A study on the selection of optimal cross section according to the ventilation system in TBM road tunnels (TBM 도로터널의 환기방식에 따른 최적단면 선정에 관한 연구)

  • Lee, Ho-Keun;Kang, Hyun-Wook;Kim, Hyun-Soo;Kim, Hong-Moon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.2
    • /
    • pp.135-148
    • /
    • 2013
  • Recently, road tunnels have become longer and the plans for long and deep road tunnel have been underway in urban areas. These long and deep tunnel excavations include NATM and TBM. Shield TBM is applied to around 80% of traffic tunnels in Europe, and approximately 30% of them in other developed countries. However, as much of equipment is imported from foreign countries at high prices and distribution rate of TBM tunnel is considerably low in Korea, NATM excavation method is commonly used. To increase TBM tunnel, it is necessary to do assure economic feasibility with the supply-demand of TBM equipment. For this, the selection of standardized TBM diameter is urgently needed. Therefore, the study aims to estimate the standardized optimum section properties of TBM by examining TBM excavation cross section utilization depending on the volume of traffic, the number of lane and its cross-section type(single or double deck), and ventilation system.