• Title/Summary/Keyword: NASTRAN

검색결과 394건 처리시간 0.022초

범용 유한요소해석 프로그램을 이용한 선박 진동인텐시티 해석 및 가시화 시스템 (An Analysis and Visualization System for Ship Structural Intensity Using a General Purpose FEA Program)

  • 김병희;이명석;조대승
    • 대한조선학회논문집
    • /
    • 제42권5호
    • /
    • pp.487-492
    • /
    • 2005
  • The structural intensity analysis, which calculates vibration energy flow from vibratory velocity and internal force of a structure, can give information on sources' power, dominant transmission path and sink of vibration energy. In this study, we present a system for structural intensity analysis and visualization to apply for anti-vibration design of ship structures. The system calculates structural intensity from the results of forced vibration analysis and visualize the intensity using a general purpose finite element analysis program MSC/Nastran and its pre- and post-processor program. To demonstrate the analysis and visualization capability of the presented system, we show and discuss the results of structural intensity analysis for a cross-stiffened plate and a 70,500 OW crude oil tanker

Material Property-Estimate Technique Based on Natural Frequency for Updating Finite Element Model of Orthotropic Beams

  • Kim, Kookhyun;Park, Sungju;Lee, Sangjoong;Hwang, Seongjun;Kim, Sumin;Lee, Yonghee
    • 한국해양공학회지
    • /
    • 제34권6호
    • /
    • pp.481-488
    • /
    • 2020
  • Composite materialsuch as glass-fiber reinforced plastic and carbon-fiber reinforced plastic (CFRP) shows anisotropic property and have been widely used for structural members and outfitings of ships. The structural safety of composite structures has been generally evaluated via finite element analysis. This paper presents a technique for updating the finite element model of anisotropic beams or plates via natural frequencies. The finite element model updates involved a compensation process of anisotropic material properties, such as the elastic and shear moduli of orthotropic structural members. The technique adopted was based on a discrete genetic algorithm, which is an optimization technique. The cost function was adopted to assess the optimization problem, which consisted of the calculated and referenced low-order natural frequencies for the target structure. The optimization process was implemented with MATLAB, which includes the finite element updates and the corresponding natural frequency calculations with MSC/NASTRAN. Material properties of a virtual cantilevered orthotropic beam were estimated to verify the presented method and the results obtained were compared with the reference values. Furthermore, the technique was applied to a cantilevered CFRP beam to successfully estimate the unknown material properties.

고속비행 복합형 무인 회전익기의 Lift-offset 로터 허브 진동 하중 성분과 기체 진동 응답의 상관 관계의 연구 (Effect of Lift-offset Rotor Hub Vibratory Load Components on Airframe Vibration Responses of High-Speed Compound Unmanned Rotorcrafts)

  • 김지수;홍성부;권영민;박재상
    • 한국군사과학기술학회지
    • /
    • 제24권3호
    • /
    • pp.255-263
    • /
    • 2021
  • This paper investigates numerically the effect of rotor hub vibratory load components on the airframe vibration responses of high-speed compound unmanned rotorcraft (HCUR) using a lift-offset coaxial rotor, wings, and two propellers. The rotor hub vibratory loads are predicted using a rotorcraft comprehensive analysis code, CAMRAD II, and the airframe vibration responses are calculated by a finite element analysis software, MSC.NASTRAN. It is shown that the vibratory hub pitch moment of a lift-offset coaxial rotor is the most dominant component for both the longitudinal and vertical vibration responses at four specified locations of the airframe.

폐쇄형 단면을 갖는 박벽 복합재료 보의 전단변형 거동 해석 (Transverse Shear Behavior of Thin-Walled Composite Beams with Closed Cross-Sections)

  • 박일주;정성남
    • Composites Research
    • /
    • 제19권5호
    • /
    • pp.1-6
    • /
    • 2006
  • 본 연구에서는 폐쇄형 단면을 갖는 박판 복합재료 보의 정밀 i차원 보 해석모델을 개발하였다. 혼합보 이론을 이용하여 복합재료 보에 대한 전단 흐름 분포 및 단면 강성 행렬에 대한 엄밀해 표현식을 유도하였다. 이를 단일 세포 상자형 단면을 갖는 복합재료 보에 적용하여 상자형 보의 단면 강성행렬에 대한 엄밀해 표현식을 얻었다. 상자형 복합재료 보의 전단 중심을 계산하였으며, 전단 변형 효과가 폐쇄형 단면 보의 정적 거동에 미치는 영향에 대해서 고찰하였다. MSC/Nastran을 이용한 유한요소 해석을 통하여 본 연구의 타당성을 도였다.

상용 S/W를 이용한 소형가스터빈엔진 회전체의 동적 구조해석 및 검증 (Dynamic Analysis of the Small-size Gas Turbine Engine Rotor Using Commercial S/W and its Limitations)

  • 정혁진;이종원;홍성욱;유태규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.797-803
    • /
    • 2009
  • The accurate prediction of dynamic characteristics of high speed rotors, such as gas turbines, is important to avoid the possibility of operating the machinery near the critical speeds or unstable speed regions. However, the dynamic analysis methods and softwares for gas turbines have been developed in the process of producing many gas turbines by manufacturers and most of them have seldom been disclosed to the public. Recently, commercial FEM softwares, such as SAMCEF, ANSYS and NASTRAN, started supporting some rotordynamics analysis modules based on 3-D finite elements. In this paper, the dynamic analysis method using commercial S/W, especially ANSYS, is attempted for the small-size gas turbine engine rotor, and the analysis capability and limitations of its rotordyamics module are evaluated for further improvement of the module. As the preliminary procedure, the rotordyamic analysis capability of ANSYS was tested and evaluated with the reference models of the well-known dynamics. The limitations in application of the rotordynamics module were then identified. Under the current capability and limitations of ANSYS, it is shown that Lee diagram, a new frequency-speed diagram enhanced with the concept of $H{\infty}$ in rotating machinery, can be indirectly obtained from FRFs computed from harmonic response analysis of ANSYS. Finally, it is demonstrated based on the modeling and analysis method developed in the process of the S/W verification that the conventional Campbell diagram, Lee diagram, mode shapes and critical speeds of the small-size gas turbine engine rotor can be computed using the ANSYS rotordynamics module.

  • PDF

등분포 중심축 하중을 받는 단층래티스돔의 좌굴거동 (Buckling Behaviors of Single-Layered Lattice Dome under Radial Uniform Loads)

  • 김충만;유은종;나창순
    • 한국전산구조공학회논문집
    • /
    • 제28권1호
    • /
    • pp.53-61
    • /
    • 2015
  • 본 논문에서는 대공간구조에 폭넓게 사용되는 단층 래티스돔의 비선형거동에 관한 비교 연구를 수행하였다. 단층 래티스돔은 특성상 두께가 얇은 쉘구조의 거동과 유사하므로 전통적인 쉘좌굴 이론을 적용하여 내력을 산출할 수 있으며 또한 이 결과를 유한요소해석 프로그램을 이용한 수치해석의 결과와 비교, 분석하였다. 쉘좌굴 이론을 이용하여서는 래티스 돔의 전체좌굴하중과 부재좌굴하중을 산정하였으며, 유한요소해석법을 이용하여서는 고유치 해석에 의한 좌굴하중과 기하학적 비선형 해석에 의한 극한하중을 각각 산정하였다. 래티스돔의 절점은 강절점 및 핀절점으로 각각 모델링하였다. 쉘좌굴이론에 의한 좌굴내력은 전체좌굴하중과 부재좌굴하중의 작은 값으로 결정되며 이 값은 유한요소해석을 이용한 고유치 해석보다는 비선형 해석에 의한 극한하중에 보다 근사한 값을 제공하였으며 또한 좌굴하중의 형식을 예측하는데에 유용하게 활용되었다.

CFD기법을 연계한 자이로콥터의 전산구조동역학 해석 (Computational Structural Dynamic Analysis of a Gyrocopter Using CFD Coupled Method)

  • 김현정;정세운;박효근;양창학;김동현
    • 한국전산구조공학회논문집
    • /
    • 제19권3호
    • /
    • pp.295-302
    • /
    • 2006
  • 본 논문은 자이로콥터의 유한요소 모델링과 로터의 회전에 의한 동하중을 고려한 전산진동해석을 수행하였다. 이를 위해 자이로콥터의 최종 조립된 3차원 CATIA 모델을 구축하였으며, 3차원 데이터를 바탕으로 비구조 질량을 포함한 구조진동해석을 위한 유한요소모델을 생성하였다. 실용적인 전산구조동역학 해석을 위해 상용 유한요소 해석프로그램인 MSC/NASTRAN과 자체 개발한 프로그램을 병용하여 사용하였다. 비행 중 회전하는 로터에 의해 발생하는 동하중은 상용 CFD 프로그램인 FLUENT를 이용하였다. 유체해석과 구조진동해석의 결합을 위해 자체적으로 통합 연계 시스템을 구축하였다. 3차원 구조의 효율적인 진동특성을 고찰하기 위해 모달영역에서 천이응답해석과 주파수응답해석을 수행하였다. 실제 자이로콥터의 연료조건과 비행조건을 고려하였으며, 전산해석을 통하여 고유진동, 주파수 응답 및 천이응답 특성을 고찰하였다.

자동차 서스펜션 로워암의 모델링 보조시스템 개발 (Development of Modeling Support System for Lower Arm in Automobile Suspension Module)

  • 이태희;신소영;서창희;권태우;한승호
    • 한국CDE학회논문집
    • /
    • 제11권1호
    • /
    • pp.49-56
    • /
    • 2006
  • In this study, the modeling support system was developed which can make easy and fast FE-modeling and verify the results of static and durability analysis for the lower arm, one of the important parts in automobile suspension module. It took into account of the whole complicated design processes verifying the durability coefficients evaluated by fatigue analysis, which should be used to satisfy a design criteria. To guide the FE-modeling the drive page was constructed by using HTML and XML, which was based on expert's know-hows. It is able to integrate the processes to design the lower arm in practice, so that the standardization of its FE-Modeling is achieved, consequently. The 3 dimensional CAD's geometrical data were changed automatically into pre-defined shell elements under the concept of mesh-offset technique, and then welding elements were treated to connect between target and basic surfaces constructed by the shell elements. This system has also a user interface to control boundary and load ing conditions applied in performing of the static and durability analysis, in which many load cases can be applied simply with the MPCs driven by just few mouse clicks. These were implemented on the platform of MSC.Patran and utilized ANSYS, MSC.Nastran and MSC.Fatigue as the solver of the analysis performed. The developed system brings not only significant decreasing of man-hours required in FE-modeling process, but also obtaining of satisfied qualities in analyzed results. It will be integrated in a part of virtual prototyping module of the developing e-engineering framework.

Design modification and structural behavior study of a CFRP star sensor baffle

  • Vinyas, M.;Vishwas, M.;Venkatesha, C.S.;Rao, G. Srinivasa
    • Advances in aircraft and spacecraft science
    • /
    • 제3권4호
    • /
    • pp.427-445
    • /
    • 2016
  • Star sensors are the attitude estimation sensors of the satellite orbiting in its path. It gives information to the control station on the earth about where the satellite is heading towards. It captures the images of a predetermined reference star. By comparing this image with that of the one captured from the earth, exact position of the satellite is determined. In the process of imaging, stray lights are eliminated from reaching the optic lens by the mechanical enclosures of the star sensors called Baffles. Research in space domain in the last few years is mainly focused on increased payload capacity and reduction in launch cost. In this paper, a star sensor baffle made of Aluminium is considered for the study. In order to minimize the component weight, material wastage and to improve the structural performance, an alternate material to Aluminium is investigated. Carbon Fiber Reinforced Polymer is found to be a better substitute in this regard. Design optimisation studies are carried out by adopting suitable design modifications like implementing an additional L-shaped flange, Upward flange projections, downward flange projections etc. A better configuration of the baffle, satisfying the design requirements and achieving manufacturing feasibility is attained. Geometrical modeling of the baffle is done by using UNIGRAPHICS-Nx7.5(R). Structural behavior of the baffle is analysed by FE analysis such as normal mode analysis, linear static analysis, and linear buckling analysis using MSC/PATRAN(R), MSC-NASTRAN(R) as the solver to validate the stiffness, strength and stability requirements respectively. Effect of the layup sequence and the fiber orientation angle of the composite layup on the stiffness are also studied.

상용 S/W를 이용한 소형가스터빈엔진 회전체의 동적 구조해석 및 검증 (Dynamic Analysis of the Small-size Gas Turbine Engine Rotor Using Commercial S/W and Its Limitations)

  • 정혁진;이종원;홍성욱;유태규
    • 한국소음진동공학회논문집
    • /
    • 제20권1호
    • /
    • pp.36-44
    • /
    • 2010
  • The accurate prediction of dynamic characteristics of high speed rotors, such as gas turbines, is important to avoid the possibility of operating the machinery near the critical speeds or unstable speed regions. However, the dynamic analysis methods and softwares for gas turbines have been developed in the process of producing many gas turbines by manufacturers and most of them have seldom been disclosed to the public. Recently, commercial FEM softwares, such as SAMCEF, ANSYS and NASTRAN, started supporting some rotordynamics analysis modules based on 3-D finite elements. In this paper, the dynamic analysis method using commercial S/W, especially ANSYS, is attempted for the small-size gas turbine engine rotor, and the analysis capability and limitations of its rotordyamics module are evaluated for further improvement of the module. As the preliminary procedure, the rotordyamic analysis capability of ANSYS was tested and evaluated with the reference models of the well-known dynamics. The limitations in application of the rotordynamics module were then identified. Under the current capability and limitations of ANSYS, it is shown that Lee diagram, a new frequency-speed diagram enhanced with the concept of $H{\infty}$ in rotating machinery, can be indirectly obtained from FRFs computed from harmonic response analysis of ANSYS. Finally, it is demonstrated based on the modeling and analysis method developed in the process of the S/W verification that the conventional Campbell diagram, Lee diagram, mode shapes and critical speeds of the small-size gas turbine engine rotor can be computed using the ANSYS rotordynamics module.