• Title/Summary/Keyword: NADPH supply

Search Result 12, Processing Time 0.035 seconds

Involvement of nitric oxide-induced NADPH oxidase in adventitious root growth and antioxidant defense in Panax ginseng

  • Tewari, Rajesh Kumar;Kim, Soohyun;Hahn, Eun-Joo;Paek, Kee-Yoeup
    • Plant Biotechnology Reports
    • /
    • v.2 no.2
    • /
    • pp.113-122
    • /
    • 2008
  • Nitric oxide (NO) affects the growth and development of plants and also affects plant responses to various stresses. Because NO induces root differentiation, we examined whether or not it is involved in increased ROS generation. Treatments with sodium nitroprusside (SNP), an NO donor, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), a specific NO scavenger, and $N{\omega}-nitro-{\text\tiny{L}}-arginine$ methyl ester hydrochloride (${\text\tiny{L}}-NAME$), an NO synthase (NOS) inhibitor, revealed that NO is involved in the adventitious root growth of mountain ginseng. Supply of an NO donor, SNP, activates NADPH oxidase activity, resulting in increased generation of $O_2{^{{\cdot}-}}$, which subsequently induces growth of adventitious roots. Moreover, treatment with diphenyliodonium chloride (DPI), an NADPH oxidase inhibitor, individually or with SNP, inhibited root growth, NADPH oxidase activity, and $O_2{^{{\cdot}-}}$ anion generation. Supply of the NO donor, SNP, did not induce any notable isoforms of enzymes; it did, however, increase the activity of pre-existing bands of NADPH oxidase, superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, and glutathione reductase. Enhanced activity of antioxidant enzymes induced by SNP supply seems to be responsible for a low level of $H_2O_2$ in the adventitious roots of mountain ginseng. It was therefore concluded that NO-induced generation of $O_2{^{{\cdot}-}}$ by NADPH oxidase seems to have a role in adventitious root growth of mountain ginseng. The possible mechanism of NO involvement in $O_2{^{{\cdot}-}}$ generation through NADPH oxidase and subsequent root growth is discussed.

Engineering of Biosynthesis Pathway and NADPH Supply for Improved L-5-Methyltetrahydrofolate Production by Lactococcus lactis

  • Lu, Chuanchuan;Liu, Yanfeng;Li, Jianghua;Liu, Long;Du, Guocheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.154-162
    • /
    • 2021
  • L-5-methyltetrahydrofolate (5-MTHF) is one of the biological active forms of folate, which is widely used as a nutraceutical. However, low yield and serious pollution associated with the chemical synthesis of 5-MTHF hampers its sustainable supply. In this study, 5-MTHF production was improved by engineering the 5-MTHF biosynthesis pathway and NADPH supply in Lactococcus lactis for developing a green and sustainable biosynthesis approach. Specifically, overexpressing the key rate-limiting enzyme methylenetetrahydrofolate reductase led to intracellular 5-MTHF accumulation, reaching 18 ㎍/l. Next, 5-MTHF synthesis was further enhanced by combinatorial overexpression of 5-MTHF synthesis pathway enzymes with methylenetetrahydrofolate reductase, resulting in 1.7-fold enhancement. The folate supply pathway was strengthened by expressing folE encoding GTP cyclohydrolase I, which increased 5-MTHF production 2.4-fold to 72 ㎍/l. Furthermore, glucose-6-phosphate dehydrogenase was overexpressed to improve the redox cofactor NADPH supply for 5-MTHF biosynthesis, which led to a 60% increase in intracellular NADPH and a 35% increase in 5-MTHF production (97 ㎍/l). To reduce formation of the by-product 5-formyltetrahydrofolate, overexpression of 5-formyltetrahydrofolate cyclo-ligase converted 5-formyltetrahydrofolate to 5,10-methyltetrahydrofolate, which enhanced the 5-MTHF titer to 132 ㎍/l. Finally, combinatorial addition of folate precursors to the fermentation medium boosted 5-MTHF production, reaching 300 ㎍/l. To the best of our knowledge, this titer is the highest achieved by L. lactis. This study lays the foundation for further engineering of L. lactis for efficient 5-MTHF biosynthesis.

Effects of Increased NADPH Concentration by Metabolic Engineering of the Pentose Phosphate Pathway on Antibiotic Production and Sporulation in Streptomyces lividans TK24

  • Jin, Xue-Mei;Chang, Yong-Keun;Lee, Jae Hag;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.10
    • /
    • pp.1867-1876
    • /
    • 2017
  • Most of the biosynthetic pathways for secondary metabolites are influenced by carbon metabolism and supply of cytosolic NADPH. We engineered carbon distribution to the pentose phosphate pathway (PPP) and redesigned the host to produce high levels of NADPH and primary intermediates from the PPP. The main enzymes producing NADPH in the PPP, glucose 6-phosphate dehydrogenase (encoded by zwf1 and zwf2) and 6-phosphogluconate dehydrogenase (encoded by zwf3), were overexpressed with opc encoding a positive allosteric effector essential for Zwf activity in various combinations in Streptomyces lividans TK24. Most S. lividans transformants showed better cell growth and higher concentration of cytosolic NADPH than those of the control, and S. lividans TK24/pWHM3-Z23O2 containing zwf2+zwf3+opc2 showed the highest NADPH concentration but poor sporulation in R2YE medium. S. lividans TK24/pWHM3-Z23O2 in minimal medium showed the maximum growth (6.2 mg/ml) at day 4. Thereafter, a gradual decrease of biomass and a sharp increase of cytosolic NADPH and sedoheptulose 7-phosphate between days 2 and 4 and between days 1 and 3, respectively, were observed. Moreover, S. lividans TK24/pWHM3-Z23O2 produced 0.9 times less actinorhodin but 1.8 times more undecylprodigiosin than the control. These results suggested that the increased NADPH concentration and various intermediates from the PPP specifically triggered undecylprodigiosin biosynthesis that required many precursors and NADPH-dependent reduction reaction. This study is the first report on bespoke metabolic engineering of PPP routes especially suitable for producing secondary metabolites that need diverse primary precursors and NADPH, which is useful information for metabolic engineering in Streptomyces.

Application of Solanum lycopersicum Glucose-6-phosphate Dehydrogenase to NADPH-generating System for Cytochrome P450 Reactions

  • Park, Chan Mi;Jeong, Heon;Ma, Sang Hoon;Kim, Hyun Min;Joung, Young Hee;Yun, Chul-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.536-545
    • /
    • 2019
  • Cytochrome P450 (P450 or CYP) is involved in the metabolism of endogenous and exogenous compounds in most organisms. P450s have great potential as biocatalysts in the pharmaceutical and fine chemical industries because they catalyze diverse oxidative reactions using a wide range of substrates. The high-cost nicotinamide cofactor, NADPH, is essential for P450 reactions. Glucose-6-phosphate dehydrogenase (G6PDH) has been commonly used in NADPH-generating systems (NGSs) to provide NADPH for P450 reactions. Currently, only two G6PDHs from Leuconostoc mesenteroides and Saccharomyces cerevisiae can be obtained commercially. To supply high-cost G6PDH cost-effectively, we cloned the cytosolic G6PDH gene of Solanum lycopersicum (tomato) with 6xHis tag, expressed it in Escherichia coli, and purified the recombinant G6PDH (His-G6PDH) using affinity chromatography. In addition, enzymatic properties of His-G6PDH were investigated, and the His-G6PDH-coupled NGS was optimized for P450 reactions. His-G6PDH supported CYP102A1-catalyzed hydroxylation of omeprazole and testosterone by NADPH generation. This result suggests that tomato His-G6PDH could be a cost-effective enzyme source for NGSs for P450-catalyzed reactions as well as other NADPH-requiring reactions.

Crystal Structures of 6-Phosphogluconate Dehydrogenase from Corynebacterium glutamicum

  • Hyeonjeong Yu;Jiyeon Hong;Jihye Seok;Young-Bae Seu;Il-Kwon Kim;Kyung-Jin Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1361-1369
    • /
    • 2023
  • Corynebacterium glutamicum (C. glutamicum) has been considered a very important and meaningful industrial microorganism for the production of amino acids worldwide. To produce amino acids, cells require nicotinamide adenine dinucleotide phosphate (NADPH), which is a biological reducing agent. The pentose phosphate pathway (PPP) can supply NADPH in cells via the 6-phosphogluconate dehydrogenase (6PGD) enzyme, which is an oxidoreductase that converts 6-phosphogluconate (6PG) to ribulose 5-phosphate (Ru5P), to produce NADPH. In this study, we identified the crystal structure of 6PGD_apo and 6PGD_NADP from C. glutamicum ATCC 13032 (Cg6PGD) and reported our biological research based on this structure. We identified the substrate binding site and co-factor binding site of Cg6PGD, which are crucial for understanding this enzyme. Based on the findings of our research, Cg6PGD is expected to be used as a NADPH resource in the food industry and as a drug target in the pharmaceutical industry.

Dehydroepiandrosterone supplement increases malate dehydrogenase activity and decreases NADPH-dependent antioxidant enzyme activity in rat hepatocellular carcinogenesis

  • Kim, Jee-Won;Kim, Sook-Hee;Choi, Hay-Mie
    • Nutrition Research and Practice
    • /
    • v.2 no.2
    • /
    • pp.80-84
    • /
    • 2008
  • Beneficial effects of dehydroepiandrosterone (DHEA) supplement on age-associated chronic diseases such as cancer, cardiovascular disease, insulin resistance and diabetes, have been reported. However, its mechanism of action in hepatocellular carcinoma in vivo has not been investigated in detail. We have previously shown that during hepatocellular carcinogenesis, DHEA treatment decreases formation of preneoplastic glutathione S-transferase placental form-positive foci in the liver and has antioxidant effects. Here we aimed to determine the mechanism of actions of DHEA, in comparison to vitamin E, in a chemically-induced hepatocellular carcinoma model in rats. Sprague-Dawley rats were administered with control diet without a carcinogen, diets with 1.5% vitamin E, 0.5% DHEA and both of the compounds with a carcinogen for 6 weeks. The doses were previously reported to have anti-cancer effects in animals without known toxicities. With DHEA treatment, cytosolic malate dehydrogenase activities were significantly increased by ${\sim}5$ fold and glucose 6-phosphate dehydrogenase activities were decreased by ${\sim}25%$ compared to carcinogen treated group. Activities of Se-glutathione peroxidase in the cytotol was decreased siguificantly with DHEA treatment, confirming its antioxidative effect. However, liver microsomal cytochrome P-450 content and NADPH-dependent cytochrome P-450 reductase activities were not altered with DHEA treatment. Vitamin E treatment decreased cytosolic Se-glutathione peroxidase activities in accordance with our previous reports. However, vitamin E did not alter glucose 6-phosphate dehydrogenase or malate dehydrogenase activities. Our results suggest that DHEA may have decreased tumor nodule formation and reduced lipid peroxidation as previously reported, possibly by increasing the production of NADPH, a reducing equivalent for NADPH-dependent antioxidant enzymes. DHEA treatment tended to reduce glucose 6-phosphate dehydrogenase activities, which may have resulted in limited supply for de novo synthesis of DNA via inhibiting the hexose monophophaste pathway. Although both DHEA and vitamin E effectively reduced preneoplastic foci in this model, they seemed to fimction in different mechanisms. In conclusion, DHEA may be used to reduce hepatocellular carcinoma growth by targeting NADPH synthesis, cell proliferation and anti-oxidant enzyme activities during tumor growth.

Investigation of the Central Carbon Metabolism of Sorangium cellulosum: Metabolic Network Reconstruction and Quantification of Pathway Fluxes

  • Bolten, Christoph J.;Heinzle, Elmar;Muller, Rolf;Wittmann, Christoph
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.1
    • /
    • pp.23-36
    • /
    • 2009
  • In the present work, the metabolic network of primary metabolism of the slow-growing myxobacterium Sorangium cellulosum was reconstructed from the annotated genome sequence of the type strain So ce56. During growth on glucose as the carbon source and asparagine as the nitrogen source, So ce56 showed a very low growth rate of $0.23\;d^{-1}$, equivalent to a doubling time of 3 days. Based on a complete stoichiometric and isotopomer model of the central metabolism, $^{13}C$ metabolic flux analysis was carried out for growth with glucose as carbon and asparagine as nitrogen sources. Normalized to the uptake flux for glucose (100%), cells recruited glycolysis (51%) and the pentose phosphate pathway (48%) as major catabolic pathways. The Entner-Doudoroff pathway and glyoxylate shunt were not active. A high flux through the TCA cycle (118%) enabled a strong formation of ATP, but cells revealed a rather low yield for biomass. Inspection of fluxes linked to energy metabolism revealed that S. cellulosum utilized only 10% of the ATP formed for growth, whereas 90% is required for maintenance. This explains the apparent discrepancy between the relatively low biomass yield and the high flux through the energy-delivering TCA cycle. The total flux of NADPH supply (216%) was higher than the demand for anabolism (156%), indicating additional reactions for balancing of NADPH. The cells further exhibited a highly active metabolic cycle, interconverting $C_3$ and $C_4$ metabolites of glycolysis and the TCA cycle. The present work provides the first insight into fluxes of the primary metabolism of myxobacteria, especially for future investigation on the supply of cofactors, building blocks, and energy in myxobacteria, producing natural compounds of biotechnological interest.

Deregulation of Aspartokinase by Single Nucleotide Exchange Leads to Global Flux Rearrangement in the Central Metabolism of Corynebacterium glutamicum

  • Kim Hyung-Min;Heinzle Elmar;Wittmann Christoph
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1174-1179
    • /
    • 2006
  • The wild-type Corynebacterium glutamicum ATIC 13032 and Corynebacterium glutamicum ATTC 13032 lysC S301Y, exhibiting a deregulated aspartokinase, were compared concerning growth, lysine production, and intracellular carbon fluxes. Both strains differ by only one single nucleotide over the whole genome. In comparison to the wild-type, the mutant showed significant production of lysine with a molar yield of 0.087 mol (mol glucose$^{-1}$) whereas the biomass yield was reduced. The deregulation of aspartokinase further led to a global rearrangement of carbon flux throughout the whole central metabolism. This involved an increased flux through the pentose phosphate pathway (PPP) and an increased flux through anaplerosis. Because of this, the mutant revealed an enhanced supply of NADPH and oxaloacetate required for lysine biosynthesis. Additionally, the lumped flux through phosphoenolpyruvate carboxykinase and malic enzyme, withdrawing oxaloacetate back to the glycolysis and therefore detrimental for lysine production, was increased. The reason for this might be a contribution of malic enzyme to NADPH supply in the mutant in the mutant. The observed complex changes are remarkable, because they are due to the minimum genetic modification possible, the exchange of only one single nucleotide.

Enhanced Production of ${\varepsilon}$-Caprolactone by Coexpression of Bacterial Hemoglobin Gene in Recombinant Escherichia coli Expressing Cyclohexanone Monooxygenase Gene

  • Lee, Won-Heong;Park, Eun-Hee;Kim, Myoung-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1685-1689
    • /
    • 2014
  • Baeyer-Villiger (BV) oxidation of cyclohexanone to ${\varepsilon}$-caprolactone in a microbial system expressing cyclohexanone monooxygenase (CHMO) can be influenced by not only the efficient regeneration of NADPH but also a sufficient supply of oxygen. In this study, the bacterial hemoglobin gene from Vitreoscilla stercoraria (vhb) was introduced into the recombinant Escherichia coli expressing CHMO to investigate the effects of an oxygen-carrying protein on microbial BV oxidation of cyclohexanone. Coexpression of Vhb allowed the recombinant E. coli strain to produce a maximum ${\varepsilon}$-caprolactone concentration of 15.7 g/l in a fed-batch BV oxidation of cyclohexanone, which corresponded to a 43% improvement compared with the control strain expressing CHMO only under the same conditions.

Effects of Xylose Reductase Activity on Xylitol Production in Two-Substrate Fermentation of Recombinant Saccharomyces cerevisiae

  • Lee, Woo-Jong;Kim, Myoung-Dong;Yoo, Myung-Sang;Ryu, Yeon-Woo;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.725-730
    • /
    • 2003
  • Three recombinant Saccharomyces cerevisiae strains showing different levels of xylose reductase activity were constructed to investigate the effects of xylose reductase activity and glucose feed rate on xylitol production. Conversion of xylose to xylitol is catalyzed by xylose reductase of Pichia stipitis with cofactor NAD(P)H. A two-substrate fermentation strategy has been employed where glucose is used as an energy source for NADPH regeneration and xylose as substrate for xylitol production. All recombinant S. cerevisiae strains Yielded similar specific xylitol productivity, indicating that xylitol production in the recombinant S. cerevisiae was more profoundly affected by the glucose supply and concomitant It generation of cofactor than the xylose reductase activity itself. It was confirmed in a continuous culture that the elevation of the glucose feeding level in the xylose-conversion period enhanced the xylitol productivity in the recombinant S. cerevisiae.