DOI QR코드

DOI QR Code

Effects of Increased NADPH Concentration by Metabolic Engineering of the Pentose Phosphate Pathway on Antibiotic Production and Sporulation in Streptomyces lividans TK24

  • Jin, Xue-Mei (Department of Biological Science and Bioinformatics, Myongji University) ;
  • Chang, Yong-Keun (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee, Jae Hag (Department of Food and Nutrition, Seoil University) ;
  • Hong, Soon-Kwang (Department of Biological Science and Bioinformatics, Myongji University)
  • Received : 2017.07.19
  • Accepted : 2017.08.23
  • Published : 2017.10.28

Abstract

Most of the biosynthetic pathways for secondary metabolites are influenced by carbon metabolism and supply of cytosolic NADPH. We engineered carbon distribution to the pentose phosphate pathway (PPP) and redesigned the host to produce high levels of NADPH and primary intermediates from the PPP. The main enzymes producing NADPH in the PPP, glucose 6-phosphate dehydrogenase (encoded by zwf1 and zwf2) and 6-phosphogluconate dehydrogenase (encoded by zwf3), were overexpressed with opc encoding a positive allosteric effector essential for Zwf activity in various combinations in Streptomyces lividans TK24. Most S. lividans transformants showed better cell growth and higher concentration of cytosolic NADPH than those of the control, and S. lividans TK24/pWHM3-Z23O2 containing zwf2+zwf3+opc2 showed the highest NADPH concentration but poor sporulation in R2YE medium. S. lividans TK24/pWHM3-Z23O2 in minimal medium showed the maximum growth (6.2 mg/ml) at day 4. Thereafter, a gradual decrease of biomass and a sharp increase of cytosolic NADPH and sedoheptulose 7-phosphate between days 2 and 4 and between days 1 and 3, respectively, were observed. Moreover, S. lividans TK24/pWHM3-Z23O2 produced 0.9 times less actinorhodin but 1.8 times more undecylprodigiosin than the control. These results suggested that the increased NADPH concentration and various intermediates from the PPP specifically triggered undecylprodigiosin biosynthesis that required many precursors and NADPH-dependent reduction reaction. This study is the first report on bespoke metabolic engineering of PPP routes especially suitable for producing secondary metabolites that need diverse primary precursors and NADPH, which is useful information for metabolic engineering in Streptomyces.

Keywords

References

  1. Horinouchi S. 2002. A microbial hormone, A-factor, as a master switch for morphological differentiation and secondary metabolism in Streptomyces griseus. Front. Biosci. 7: d2045-d2057.
  2. Craney A, Ahmed S, Nodwell J. 2013. Towards a new science of secondary metabolism. J. Antibiot. (Tokyo) 66: 387-400. https://doi.org/10.1038/ja.2013.25
  3. Butler MJ, Bruheim P, Jovetic S, Marinelli F, Postma PW, Bibb MJ. 2002. Engineering of primary carbon metabolism for improved antibiotic production in Streptomyces lividans. Appl. Environ. Microbiol. 68: 4731-4739. https://doi.org/10.1128/AEM.68.10.4731-4739.2002
  4. Poulsen BR, Nohr J, Douthwaite S, Hansen LV, Iversen JJ, Visser J, et al. 2005. Increased NADPH concentration obtained by metabolic engineering of the pentose phosphate pathway in Aspergillus niger. FEBS J. 272: 1313-1325. https://doi.org/10.1111/j.1742-4658.2005.04554.x
  5. Corre C, Challis GL. 2005. Evidence for the unusual condensation of a diketide with a pentulose in the methylenomycin biosynthetic pathway of Streptomyces coelicolor A3(2). Chembiochem 6: 2166-2170. https://doi.org/10.1002/cbic.200500243
  6. Huppe HC, Farr TJ, Turpin DH. 1994. Coordination of chloroplastic metabolism in N-limited Chlamydomonas reinhardtii by redox modulation (II. Redox modulation activates the oxidative pentose phosphate pathway during photosynthetic nitrate assimilation). Plant Physiol. 105: 1043-1048. https://doi.org/10.1104/pp.105.4.1043
  7. Hood DW, Heidstra R, Swoboda UK, Hodgson DA. 1992. Molecular genetic analysis of proline and tryptophan biosynthesis in Streptomyces coelicolor A3(2): interaction between primary and secondary metabolism - a review. Gene 115: 5-12. https://doi.org/10.1016/0378-1119(92)90533-U
  8. Zhang CS, Stratmann A, Block O, Bruckner R, Podeschwa M, Altenbach HJ, et al. 2002. Biosynthesis of the C(7)-cyclitol moiety of acarbose in Actinoplanes species SE50/110. 7-OPhosphorylation of the initial cyclitol precursor leads to proposal of a new biosynthetic pathway. J. Biol. Chem. 277: 22853-22862. https://doi.org/10.1074/jbc.M202375200
  9. Minagawa K, Zhang Y, Ito T, Bai L, Deng Z, Mahmud T. 2007. ValC, a new type of C7-cyclitol kinase involved in the biosynthesis of the antifungal agent validamycin A. Chembiochem 8: 632-641. https://doi.org/10.1002/cbic.200600528
  10. Choi WS, Wu X, Choeng YH, Mahmud T, Jeong BC, Lee SH, et al. 2008. Genetic organization of the putative salbostatin biosynthetic gene cluster including the 2-epi-5-epi-valiolone synthase gene in Streptomyces albus ATCC 21838. Appl. Microbiol. Biotechnol. 80: 637-645. https://doi.org/10.1007/s00253-008-1591-2
  11. Miclet E, Stoven V, Michels PA, Opperdoes FR, Lallemand JY, Duffieux F. 2001. NMR spectroscopic analysis of the first two steps of the pentose-phosphate pathway elucidates the role of 6-phosphogluconolactonase. J. Biol. Chem. 276: 34840-34846. https://doi.org/10.1074/jbc.M105174200
  12. Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, et al. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141-147. https://doi.org/10.1038/417141a
  13. Sundaram S, Karakaya H, Scanlan DJ, Mann NH. 1998. Multiple oligomeric forms of glucose-6-phosphate dehydrogenase in cyanobacteria and the role of OpcA in the assembly process. Microbiology 144: 1549-1556. https://doi.org/10.1099/00221287-144-6-1549
  14. Moritz B, Striegel K, De Graaf AA, Sahm H. 2000. Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo. Eur. J. Biochem. 267: 3442-3452. https://doi.org/10.1046/j.1432-1327.2000.01354.x
  15. Taguchi T, Yabe M, Odaki H, Shinozaki M, Metsa-Ketela M, Arai T, et al. 2013. Biosynthetic conclusions from the functional dissection of oxygenases for biosynthesis of actinorhodin and related Streptomyces antibiotics. Chem. Biol. 20: 510-520. https://doi.org/10.1016/j.chembiol.2013.03.007
  16. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. 2000. Practical Streptomyces Genetics. John Innes Foundation, Norwich, England.
  17. Vara J, Lewandowska-Skarbek M, Wang YG, Donadio S, Hutchinson CR. 1989. Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in Saccharopolyspora erythraea (Streptomyces erythreus). J. Bacteriol. 171: 5872-5881. https://doi.org/10.1128/jb.171.11.5872-5881.1989
  18. Green MR, Sambrook J. 2012. Molecular Cloning. A Laboratory Manual, 4th Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  19. Wamelink MM, Struys EA, Huck JH, Roos B, van der Knaap MS, Jakobs C, et al. 2005. Quantification of sugar phosphate intermediates of the pentose phosphate pathway by LCMS/ MS: application to two new inherited defects of metabolism. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 823: 18-25. https://doi.org/10.1016/j.jchromb.2005.01.001
  20. Bystrykh LV, Fernandez-Moreno MA, Herrema JK, Malpartida FM, Hopwood DA, Dijkhuizen L. 1996. Production of actinorhodin-related "blue pigments" by Streptomyces coelicolor A3(2). J. Bacteriol. 178: 2238-2244. https://doi.org/10.1128/jb.178.8.2238-2244.1996
  21. Takano E, Gramajo HC, Strauch E, Andres N, White J, Bibb MJ. 1992. Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2). Mol. Microbiol. 6: 2797-2804. https://doi.org/10.1111/j.1365-2958.1992.tb01459.x
  22. Avignone Rossa C, White J, Kuiper A, Postma PW, Bibb M, Teixeira de Mattos MJ. 2002. Carbon flux distribution in antibiotic-producing chemostat cultures of Streptomyces lividans. Metab. Eng. 4: 138-150. https://doi.org/10.1006/mben.2001.0217
  23. Coze F, Gilard F, Tcherkez G, Virolle MJ, Guyonvarch A. 2013. Carbon-flux distribution within Streptomyces coelicolor metabolism: a comparison between the actinorhodin-producing strain M145 and its non-producing derivative M1146. PLoS One 8: e84151. https://doi.org/10.1371/journal.pone.0084151
  24. Kim HB, Smith CP, Micklefield J, Mavituna F. 2004. Metabolic flux analysis for calcium dependent antibiotic (CDA) production in Streptomyces coelicolor. Metab. Eng. 6: 313-325. https://doi.org/10.1016/j.ymben.2004.04.001
  25. Borodina I, Siebring J, Zhang J, Smith CP, van Keulen G, Dijkhuizen L, et al. 2008. Antibiotic overproduction in Streptomyces coelicolor A3(2) mediated by phosphofructokinase deletion. J. Biol. Chem. 283: 25186-25199. https://doi.org/10.1074/jbc.M803105200
  26. Ryu YG, Butler MJ, Chater KF, Lee KJ. 2006. Engineering of primary carbohydrate metabolism for increased production of actinorhodin in Streptomyces coelicolor. Appl. Environ. Microbiol. 72: 7132-7139. https://doi.org/10.1128/AEM.01308-06
  27. Bartel PL, Zhu CB, Lampel JS, Dosch DC, Connors NC, Strohl WR, et al. 1990. Biosynthesis of anthraquinones by interspecies cloning of actinorhodin biosynthesis genes in streptomycetes: clarification of actinorhodin gene functions. J. Bacteriol. 172: 4816-4826. https://doi.org/10.1128/jb.172.9.4816-4826.1990
  28. Beltran- Alvarez P, Cox RJ, Crosby J, Simpson TJ. 2007. Dissecting the component reactions catalyzed by the actinorhodin minimal polyketide synthase. Biochemistry 46: 14672-14681. https://doi.org/10.1021/bi701784c
  29. Williamson NR, Fineran PC, Leeper FJ, Salmond GP. 2006. The biosynthesis and regulation of bacterial prodiginines. Nat. Rev. Microbiol. 4: 887-899. https://doi.org/10.1038/nrmicro1531
  30. Trutko S, Akimenko V. 1989. The role of prodigiosin biosynthesis in the regulation of oxidative metabolism of the producer Serratia marcescens. Mikrobiologiia 58: 723-729.

Cited by

  1. Redox cofactor engineering in industrial microorganisms: strategies, recent applications and future directions vol.45, pp.5, 2017, https://doi.org/10.1007/s10295-018-2031-7
  2. Enhancement of Bacitracin Production by NADPH Generation via Overexpressing Glucose-6-Phosphate Dehydrogenase Zwf in Bacillus licheniformis vol.187, pp.4, 2019, https://doi.org/10.1007/s12010-018-2894-0
  3. Comparative global metabolite profiling of xylose-fermenting Saccharomyces cerevisiae SR8 and Scheffersomyces stipitis vol.103, pp.13, 2019, https://doi.org/10.1007/s00253-019-09829-5
  4. Identification and engineering of 32 membered antifungal macrolactone notonesomycins vol.19, pp.None, 2017, https://doi.org/10.1186/s12934-020-01328-x
  5. Engineering of Biosynthesis Pathway and NADPH Supply for Improved L-5-Methyltetrahydrofolate Production by Lactococcus lactis vol.31, pp.1, 2017, https://doi.org/10.4014/jmb.1910.10069