• 제목/요약/키워드: N-nitro-L-arginine methyl ester

검색결과 95건 처리시간 0.033초

쥐 대동맥 혈관 내피세포에서 세포 외 $K^+$에 의한 혈관 수축선 조절 기전 (Extracellular $K^+$ Effects on the Mouse Aortic Endothelial Cell Contractility)

  • 안재호;유지영
    • Journal of Chest Surgery
    • /
    • 제36권12호
    • /
    • pp.887-893
    • /
    • 2003
  • 외부 자극에 의해 세포 내 $Ca^{2+}$이 증가하면 $K^{+}$이 유출되는 기전을 통해 세포 외 $K^{+}$이 증가하는데, 이 $K^{+}$ 의 증가가 혈관 수축에 미치는 영향을 규명하고자 쥐 대동맥 혈관내피세포를 이용해 실험을 시행하였다. 대상 및 방법: 세포 외 $K^{+}$ 농도를 증가시키거나, 혈관 내피세포의 제거, nitric oxide 생성 억제제인 L-NAME (N-nitro-L-arginine methyl ester)의 투여, $Na^{+}$- $K^{+}$ pump 억제제인 Ouabain, $Na^{+}$-C $a^{2+}$ exchanger 억제제인 N $i^{2+}$의 투여 등 조건을 달리하며, 막전압고정법을 이용, $Ca^{2+}$ 변화와 여러 이온 전류 변화를 측정해 혈관의 수축성을 알아보았다. 결과: 세포외 $K^{+}$ 농도를 6에서 12 mM 증가시켜도 norepinephrine에 의한 혈관의 수축성에는 변화가 없었고, 12 mM 상으로 증가시키면 평활근이 수축하기 시작하였다. Acetylcholine (ACh)에 의해 유발된 내피세포 의존성 이완은 세포 외 $K^{+}$ 농도를 6에서 12 mM로 증가시키면 억제되었으며, 혈관내피세포를 제거하거나 L-NAME을 투여하는 경우에 ACh에 의한 이완은 일어나지 않았다. 배양한 쥐 대동맥 내피세포에서는 ATP혹은 ACh에 의해 세포 내 $Ca^{2+}$이 증가하였으며, 세포 내 $Ca^{2+}$ 증가가 정점에 이른 후 세포 외 $K^{+}$을 6에서 12 mM로 증가시키면 세포 내 $Ca^{2+}$이 농도 의존적으로 감소하였으나 다시 6 mM로 감소시키면 세포 내 $Ca^{2+}$이 증가하였다. 또한 세포 외 $K^{+}$ 증가에 의한 내피세포 의존성 이완효과는 Ouabain과 N $i^{2+}$에 의하여 억제되었다. 걸론 세포 외 $K^{+}$의 증가는 저항혈관 평활근은 이완시키며, 혈관내피세포 $Ca^{2+}$을 감소시켜 내피세포 의존성 이완을 억제하는데 이는 $Na^{+}$- $K^{+}$ pump와 $Na^{+}$-C $a^{2+}$exchanger를 활성화시켜 일어나는 것으로 생각된다.

Carbon monoxide activation of delayed rectifier potassium currents of human cardiac fibroblasts through diverse pathways

  • Bae, Hyemi;Kim, Taeho;Lim, Inja
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권1호
    • /
    • pp.25-36
    • /
    • 2022
  • To identify the effect and mechanism of carbon monoxide (CO) on delayed rectifier K+ currents (IK) of human cardiac fibroblasts (HCFs), we used the wholecell mode patch-clamp technique. Application of CO delivered by carbon monoxidereleasing molecule-3 (CORM3) increased the amplitude of outward K+ currents, and diphenyl phosphine oxide-1 (a specific IK blocker) inhibited the currents. CORM3-induced augmentation was blocked by pretreatment with nitric oxide synthase blockers (L-NG-monomethyl arginine citrate and L-NG-nitro arginine methyl ester). Pretreatment with KT5823 (a protein kinas G blocker), 1H-[1,-2,-4] oxadiazolo-[4,-3-a] quinoxalin-1-on (ODQ, a soluble guanylate cyclase blocker), KT5720 (a protein kinase A blocker), and SQ22536 (an adenylate cyclase blocker) blocked the CORM3 stimulating effect on IK. In addition, pretreatment with SB239063 (a p38 mitogen-activated protein kinase [MAPK] blocker) and PD98059 (a p44/42 MAPK blocker) also blocked the CORM3's effect on the currents. When testing the involvement of S-nitrosylation, pretreatment of N-ethylmaleimide (a thiol-alkylating reagent) blocked CO-induced IK activation and DL-dithiothreitol (a reducing agent) reversed this effect. Pretreatment with 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)-21H,23H porphyrin manganese (III) pentachloride and manganese (III) tetrakis (4-benzoic acid) porphyrin chloride (superoxide dismutase mimetics), diphenyleneiodonium chloride (an NADPH oxidase blocker), or allopurinol (a xanthine oxidase blocker) also inhibited CO-induced IK activation. These results suggest that CO enhances IK in HCFs through the nitric oxide, phosphorylation by protein kinase G, protein kinase A, and MAPK, S-nitrosylation and reduction/oxidation (redox) signaling pathways.

Immunostimulation of C6 Glioma Cells Induces Nitric Oxide-Dependent Cell Death in Serum-Free, Glucose-Deprived Condition

  • Shin, Chan-Young;Choi, Ji-Woong;Ryu, Jae-Ryun;Ryu, Jong-Hoon;Kim, Won-Ki;Kim, Hyong-Chun;Ko, Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • 제8권2호
    • /
    • pp.140-146
    • /
    • 2000
  • Recently, we reported that immunostimulation of primary rat cortical astrocyte caused stimulation of glucose deprivation induced apoptotic cell death. To enhance the understanding of the mechanism of the potentiated cell death of clucose-deprived astrocyte by immunostimulation, we investigated the effect of immunostimulation on the glucose deprivation induced cell death of rat C6 glioma cells. Co-treatment of C6 glioma cells with lipopolysaccharide (LPS, $1\;{\mu}\textrm{g}/ml$) and interferon ${\gamma}(IFN{\gamma},\;100U/ml)$ is serum free condition caused marked elevationo f nitric oxide production ($>50\;{\mu}M$). In this condition, glucose deprivation caused significant release of lactate dehdrogenase (LDH) from C6 glioma cells while control cells did not show LDH release. To investigate whether elevated level of nitric oxide is responsible for the enhanced LDH release in glucose-deprived condition, C6 glioma cells were treated with 3-morphorinosydnonimine (SIN-1) and it was observed that SIN-1 caused increase in LDH release from glucose-deprived C6 glioma cells. Treatment of C6 glioma cells with $25\;{\mu}M$ of pyrrolidinedithiocarbamate (PDTC) which inhibit Nuclear factor kB (NF-kB) activation, caused complete inhibition of nitric oxide production. Treatment of C6 glioma cells with NO synthase inhibitors, $N^{G}$-nitro-L-arginine (NNA) or L-$N{\omega}$-nitro-L-arginine methyl ester (L-NAME), caused inhibition of nitric oxide production and also glucose deprivation induced cell death of cytokine-stimulated C6 glioma cells. In addition, diaminohydroxypyrimidine (DAHP, 5 mM) which inhibits the synthesis of tetrahydrobiopterine (BH4), one of essential cofactors for iNOS activity, caused complete inhibition of NO production from immunostimulated C6 glioma cells. The results from the present study suggest that immunostimulation causes potentiation of glucose deprivation induced death of C6 glioma cells which is mediated at least in part by the increased production of nitric oxide. The vulnerability of immunostimulated C6 glioma cells to hypoglycemic insults may implicate that the elevated level of cytokines in various ischemic and neurodegenerative diseases may play a role in their pathogenesis.

  • PDF

Effect of Hydroalcoholic Extract of Ribes khorasanicum on Acute Hypertension Induced by L-NAME in Rat

  • Hamounpeima, Ismael;Hosseini, Mahmoud;Mohebbati, Reza;Shafei, Mohammad Naser
    • 대한약침학회지
    • /
    • 제22권3호
    • /
    • pp.160-165
    • /
    • 2019
  • Objectives: The aim of this study was to evaluate the effect of Ribes khorasanicum (R. khorasanicum); a plant growing in north Khorasan of Iran; on cardiovascular and stress oxidative in acute hypertension induced by N-nitro-l-arginine methyl ester (L-NAME), anitric oxide synthase inhibitor. Methods: Rats were divided into Control, L-NAME (10 mg/kg), Sodium Nitroprusside (SNP) (50 mg/kg) + L-NAME and three treated groups with R. khorasanicum (4, 12 and 24 mg/kg) groups + L-NAME. L-NAME and SNP were injected intravenously and extract intraperitoneal. In R. khorasanicum groups, L-NAME was injected 30 min after injection of the extract. Systolic blood pressure (SBP), mean arterial pressure (MAP) and heart rate (HR) were recorded continuously using power lab software. At the end of study oxidative stress parameters including of total thiol content (SH), malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) in heart and aorta of all groups were also measured. Results: In groups 4 and 24 mg/kg extract +L-NAME, there was a non-significant decrease in SBP and MAP compared to L-NAME group but dose 12 mg/kg significantly attenuate the effect of L-NAME(P < 0.05). In L-NAME group the heart and aorta tissues antioxidant enzymes levels decreased, while in treated rats these enzymes significantly increased. Conclusion: The extract of R. khorasanicum in dose 12 mg/kg show anti-hypertensive effect that is mediated by an effect on NO system or antioxidant parameters.

Effect of Lutein on L-NAME-Induced Hypertensive Rats

  • Sung, Ji Hoon;Jo, Young Soo;Kim, Su Jin;Ryu, Jeong Soo;Kim, Myung Chul;Ko, Hyun Ju;Sim, Sang Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권4호
    • /
    • pp.339-345
    • /
    • 2013
  • We investigated the antihypertensive effect of lutein on $N^G$-nitro-L-arginine methyl ester hydrochloride (L-NAME)-induced hypertensive rats. Daily oral administration of L-NAME (40 mg/kg)-induced a rapid progressive increase in mean arterial pressure (MAP). L-NAME significantly increased MAP from the first week compared to that in the control and reached $193.3{\pm}9.6$ mmHg at the end of treatment. MAP in the lutein groups was dose-dependently lower than that in the L-NAME group. Similar results were observed for systolic and diastolic blood pressure of L-NAME-induced hypertensive rats. The control group showed little change in heart rate for 3 weeks, whereas L-NAME significantly reduced heart rate from $434{\pm}26$ to $376{\pm}33$ beats/min. Lutein (2 mg/kg) significantly prevented the reduced heart rate induced by L-NAME. L-NAME caused hypertrophy of heart and kidney, and increased plasma lipid peroxidation four-fold but significantly reduced plasma nitrite and glutathione concentrations, which were significantly prevented by lutein in a dose-dependent manner. These findings suggest that lutein affords significant antihypertensive and antioxidant effects against L-NAME-induced hypertension in rats.

L-NAME에 의한 쥐의 발바닥에서 Freund's Complete Adjuvant에 의해 유발된 통증 억제 (L-NAME Inhibits Hyperalgesia Induced by Freund's Complete Adjuvant in Rat Paw)

  • 이청;최윤;송명희;임중우;이동명
    • The Korean Journal of Pain
    • /
    • 제11권2호
    • /
    • pp.194-200
    • /
    • 1998
  • Background: Effect of nitric oxide on the hyperalgesia induced by inflammation is controversial. We attempted to find out the peripheral effects of nitric oxide (NO) on hyperalgesia induced by Freund's complete adjuvant (FCA) induced inflammation. Methods: Male Sprague Dawley rats were divided into three groups; control, low dose NG-nitro-L-arginine methyl ester (L-NAME, 500 ug), high dose L-NAME (5 mg). Inflammation was induced by injecting 0.1 ml of FCA intraplantarly, which shows typical hyperalgesia within twelve hours after injection and maintained for about one week. Drugs were injected 2 hours before, just before, and 3, 6, 9, 12 hours after the injection of FCA. Effect of L-NAME on hyperalgesia was assessed by measuring mechanical hyperalgesia and spontaneous pain for 3 days. Results: When injected at the site of inflammation, L-NAME caused dose dependent reduction of spontaneous hyperalgesia. Mechanical hyperalgesia was also reduced by high dose L-NAME (p<0.05). After systemic injection of high dose L-NAME in the back, no significant difference was noticed. Conclusions: This suggest that L-NAME reduces FCA induced hyperalgesia via peripheral action.

  • PDF

The Relaxant Effect of Propofol on Isolated Rat Intrapulmonary Arteries

  • Zhang, Guangyan;Cui, Jianxiu;Chen, Yijing;Ma, Jue
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권5호
    • /
    • pp.377-381
    • /
    • 2014
  • Propofol is a widely used anesthetic. Many studies have shown that propofol has direct effects on blood vessels, but the precise mechanism is not fully understood. Secondary intrapulmonary artery rings from male rats were prepared and mounted in a Multi Myograph System. The following constrictors were used to induce contractions in isolated artery rings: high $K^+$ solution (60 mmol/L); U46619 solution (100 nmol/L); 5-hydroxytryptamine (5-HT; $3{\mu}mol/L$); or phenylephrine (Phe; $1{\mu}mol/L$). The relaxation effects of propofol were tested on high $K^+$ or U46619 precontracted rings. Propofol also was added to induce relaxation of rings preconstricted by U46619 after pretreatment with the nitric oxide synthase inhibitor $N^G$-nitro-L-arginine methyl ester (L-NAME). The effects of propofol on $Ca^{2+}$ influx via the L-type $Ca^{2+}$ channels were evaluated by examining contraction-dependent responses to $CaCl_2$ in the absence or presence of propofol (10 to $300{\mu}mol/L$). High $K^+$ solution and U46619 induced remarkable contractions of the rings, whereas contractions induced by 5-HT and Phe were weak. Propofol induced dose-dependent relaxation of artery rings precontracted by the high $K^+$ solution. Propofol also induced relaxation of rings precontracted by U46619 in an endothelium-independent way. Propofol at different concentrations significantly inhibited the $Ca^{2+}$-induced contractions of pulmonary rings exposed to high $K^+$-containing and $Ca^{2+}$-free solution in a dose-dependent manner. Propofol relaxed vessels precontracted by the high $K^+$ solution and U46619 in an endothelium-independent way. The mechanism for this effect may involve inhibition of calcium influx through voltage-operated calcium channels (VOCCs) and receptor-operated calcium channels (ROCCs).

Superoxide and Nitric Oxide Involvement in Enhancing of N-methyl-D-aspartate Receptor-Mediated Central Sensitization in the Chronic Post-ischemia Pain Model

  • Ryu, Tae-Ha;Jung, Kyung-Young;Ha, Mi-Jin;Kwak, Kyung-Hwa;Lim, Dong-Gun;Hong, Jung-Gil
    • The Korean Journal of Pain
    • /
    • 제23권1호
    • /
    • pp.1-10
    • /
    • 2010
  • Background: Recent studies indicate that reactive oxygen species (ROS) are involved in persistent pain, including neuropathic and inflammatory pain. Since the data suggest that ROS are involved in central sensitization, the present study examines the levels of activated N-methyl-D-aspartate (NMDA) receptors in the dorsal horn after an exogenous supply of three antioxidants in rats with chronic post-ischemia pain (CPIP). This serves as an animal model of complex regional pain syndrome type-I induced by hindpaw ischemia/reperfusion injury. Methods: The application of tight-fitting O-rings for a period of three hours produced CPIP in male Sprague-Dawley rats. Allopurinol 4 mg/kg, allopurinol 40 mg/kg, superoxide dismutase (SOD) 4,000 U/kg, N-nitro-L-arginine methyl ester (L-NAME) 10 mg/kg and SOD 4,000 U/kg plus L-NAME 10 mg/kg were administered intraperitoneally just after O-ring application and on the first and second days after reperfusion. Mechanical allodynia was measured, and activation of the NMDA receptor subunit 1 (pNR1) of the lumbar spinal cord (L4-L6) was analyzed by the Western blot three days after reperfusion. Results: Allopurinol reduced mechanical allodynia and attenuated the enhancement of spinal pNR1 expression in CPIP rats. SOD and L-NAME also blocked spinal pNR1 in accordance with the reduced mechanical allodynia in rats with CPIP. Conclusions: The present data suggest the contribution of superoxide, produced via xanthine oxidase, and the participation of superoxide and nitric oxide as a precursor of peroxynitrite in NMDA mediated central sensitization. Finally, the findings support a therapeutic potential for the manipulation of superoxide and nitric oxide in ischemia/reperfusion related pain conditions.

정향피 추출물의 혈관 이완효과 및 작용기전에 대한 연구 (Study on the Mechanism of Vascular Relaxation Induced by Cortex Caryphylli)

  • 송철민;신선호;정현애;이준경;조려화;강대길;이호섭
    • 동의생리병리학회지
    • /
    • 제20권5호
    • /
    • pp.1166-1173
    • /
    • 2006
  • The aqueous extracts of Cortex Caryophylli (AEC) induced dose-dependent relaxation of phenylephrine-precontracted aorta, which was abolished by removal of functional endothelium. Pretreatment of the endothelium-intact aortic tissues with N$^G$_nitro-L-arginine methyl ester (L-NAME) or 1 H-[1,2,4]-oxadiazole-[4,3-${\alpha}$l-quinoxalin-1-one (ODQ) inhibited the relaxation induced by AEC. AEC-induced vascular relaxations were also markedly attenuated by addition of verapamil, diltiazem and glibenclamide, tetraethylammonium (TEA), respectively, while the relaxation effect of AEC was not blocked by indomethacin, atropine, or propranolol. Moreover, incubation of endothelium-intact aortic rings with AEC increased the production of cGMP. These results suggest that AEC dilates vascular smooth muscle via endothelium-dependent nitric oxide/cGMP signaling, which seems to be causally related with L-type Ca$^{2+}$ and K$^+$ channels.

In vitro Conidial Germination and Mycelial Growth of Fusarium oxysporum f. sp. fragariae Coordinated by Hydrogen Peroxideand Nitric Oxide-signalling

  • Do, Yu Jin;Kim, Do Hyeon;Jo, Myung Sung;Kang, Dong Gi;Lee, Sang Woo;Kim, Jin-Won;Hong, Jeum Kyu
    • 한국균학회지
    • /
    • 제47권3호
    • /
    • pp.219-232
    • /
    • 2019
  • Chemicals related to hydrogen peroxide ($H_2O_2$) and nitric oxide (NO) generations were exogenously applied to Fusarium oxysporum f. sp. fragariae (Fof) causing Fusarium wilt disease in strawberry plants, and regulations of in vitro conidial germination and mycelial growth of the fungus by the chemical treatments were evaluated. $H_2O_2$ drastically reduced the conidial germination of Fof in a dose-dependent manner, and treatment with 3-amino-1,2,4-triazole (3-AT) catalase inhibitor also led to dose-dependent inhibition of conidial germination but relatively moderately. Gradual decreases in mycelial growth of Fof were found by high concentrations of $H_2O_2$, whilst exogenous 3-AT slightly increased the mycelial growth. Increasing sodium nitroprusside (SNP) NO donor, $N^G$-nitro-l-arginine methyl ester (L-NAME) NO synthase (NOS)-inhibitor and tungstate nitrate reductase (NR) inhibitor led to dose-dependent reductions in conidial germination of Fof in quite different levels. SNP conversely increased the mycelial growth but increasing L-NAME moderately decreased the mycelial growth. Tungstate strongly enhanced mycelial growth. Differentially regulated in vitro mycelial growths of Fof were demonstrated by SNP, L-NAME and tungstate with or without $H_2O_2$ supplement. Superoxide anion production was also regulated during the mycelial growth of Fof by nitric oxide. These results show that $H_2O_2$ and NO-associated enzymes can be suggested as fungal growth regulators of Fof as well as eco-friendly disease-managing agents in strawberry production fields.