• Title/Summary/Keyword: N-methyl-D-aspartate Receptor

Search Result 117, Processing Time 0.028 seconds

Effects of (-)-Sesamin on Memory Deficits in MPTP-lesioned Mouse Model of Parkinson's Disease

  • Zhao, Ting Ting;Shin, Keon Sung;Lee, Myung Koo
    • Natural Product Sciences
    • /
    • v.22 no.4
    • /
    • pp.246-251
    • /
    • 2016
  • This study investigated the effects of (-)-sesamin on memory deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mouse model of Parkinson's disease (PD). MPTP lesion (30 mg/kg/day, 5 days) in mice showed memory deficits including habit learning memory and spatial memory. However, treatment with (-)-sesamin (25 and 50 mg/kg) for 21 days ameliorated memory deficits in MPTP-lesioned mouse model of PD: (-)-sesamin at both doses improved decreases in the retention latency time of the passive avoidance test and the levels of dopamine, norepinephrine, 3,4-dihydroxyphenylacetic acid, and homovanillic acid, improved the decreased transfer latency time of the elevated plus-maze test, reduced the increased expression of N-methyl-D-aspartate (NMDA) receptor, and increased the reduced phosphorylation of extracellular signal-regulated kinase (ERK1/2) and cyclic AMP-response element binding protein (CREB). These results suggest that (-)-sesamin has protective effects on both habit learning memory and spatial memory deficits via the dopaminergic neurons and NMDA receptor-ERK1/2-CREB system in MPTP-lesioned mouse model of PD, respectively. Therefore, (-)-sesamin may serve as an adjuvant phytonutrient for memory deficits in PD patients.

Expression of nitric oxide synthase isoforms and N-methyl-D-aspartate receptor subunits according to transforming growth factor-β1 administration after hypoxic-ischemic brain injury in neonatal rats (신생 백서의 저산소 허혈 뇌손상에서 Transforming Growth Factor-β1 투여에 따른 Nitric Oxide Synthase 이성체와 N-methyl-D-aspartate 수용체 아단위의 발현)

  • Go, Hye Young;Seo, Eok Su;Kim, Woo Taek
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.5
    • /
    • pp.594-602
    • /
    • 2009
  • Purpose : Transforming growth factor (TGF)-${\beta}1$ reportedly increases neuronal survival by inhibiting the induction of inducible nitric oxide synthase (NOS) in astrocytes and protecting neurons after excitotoxic injury. However, the neuroprotective mechanism of $TGF-{\beta}1$ on hypoxic-ischemic (HI) brain injury in neonatal rats is not clear. The aim of this study was to determine whether $TGF-{\beta}1$ has neuroprotective effects via a NO-mediated mechanism and N-methyl-D-aspartate (NMDA) receptor modulation on perinatal HI brain injury. Methods : Cortical cells were cultured using 19-day-pregnant Sprague-Dawley (SD) rats treated with $TGF-{\beta}1$ (1, 5, or 10 ng/mL) and incubated in a 1% O2 incubator for hypoxia. Seven-day-old SD rat pups were subjected to left carotid occlusion followed by 2 h of hypoxic exposure (7.5% $O_2$). $TGF-{\beta}1$ (0.5 ng/kg) was administered intracerebrally to the rats 30 min before HI brain injury. The expressions of NOS and NMDA receptors were measured. Results : In the in vitro model, the expressions of endothelial NOS (eNOS) and neuronal NOS (nNOS) increased in the hypoxic group and decreased in the 1 ng/mL $TGF-{\beta}1-treated$ group. In the in vivo model, the expression of inducible NOS (iNOS) decreased in the hypoxia group and increased in the $TGF-{\beta}1$-treated group. The expressions of eNOS and nNOS were reversed compared with the expression of iNOS. The expressions of all NMDA receptor subunits decreased in hypoxia group and increased in the $TGF-{\beta}1$-treated group except NR2C. Conclusion : The administration of $TGF-{\beta}1$ could significantly protect against perinatal HI brain injury via some parts of the NO-mediated or excitotoxic mechanism.

NMDA Receptor Antagonists Enhance 5-HT2 Receptor-Mediated Behavior, Head-Twitch Response, in PCPA-Treated Mice

  • Kim, Hack-Seang;Park, In-Sook;Lim, Hwa-Kyung;Choi, Hong-Seork
    • Archives of Pharmacal Research
    • /
    • v.22 no.2
    • /
    • pp.113-118
    • /
    • 1999
  • Previous work in our laboratory has shown that the N-methyl-D-aspartate (NMDA) receptor antagonists, AP-5, CPP, MK-801, ketamine, dextrorphan and dextromethorphan cause a pronounced enhancement of 5-hydroxytryptamine (5-HT)-induced head-twitch response (HTR) in intact mice, suggesting the involvement of NMDA receptors in the glutamatergic modulation of serotonergic function at the postsynaptic $5-HT_{2}$ receptors. The purpose of this study was to extend our previous work on the behavioral interaction between glutamatergic and serotonergic receptors. In the present study, both competitive (AP-5 and CPP) and noncompeti-tive (MI-801, ketamine, dextrorphan and dextromethorphan) NMDA receptor antagonists markedly enhanced 5-HT-induced selective serotonergic behavior, HTR, in p-chlorophenylalanine (PCPA)-treated mice which were devoid of any involvement of indirect serotonergic function, to establish the involvement of the NMDA receptor in 5-HT-induced HTR at the postsyaptic $5-HT_{2}$receptors. In addition, the enhancement of 5-HT-induced HTR was inhibited by a dopamine agonist, apomorphine, NMDA receptor antagonist, NMDA and a serotonin $5-HT_{2}$receptor antagonist, cyproheptadine, in PCPA-treated mice. Therefore, the present results support our previous conclusion that the NMDA receptors play an important role in the glutamatergic modulation of serotonergic function at the poststynaptic $5-HT_{2}$ receptors.

  • PDF

Irradiation in Central Nervous System and Recovery Effect: Action of Antioxidants and NMDA-receptor Antagonists (중추신경의 방사선 조사와 회복효과: 항산화제와 NMDA-receptor 길항제의 작용)

  • Mun, Yeun-Ja;Park, Seung-Taeck;Choi, Min-Kyu;Jeong, Dong-Hyeok;Moon, Sun-Rock;Chung, Yeun-Tai
    • Applied Microscopy
    • /
    • v.28 no.4
    • /
    • pp.591-601
    • /
    • 1998
  • The neurotoxic effects of radiation have been studied in NSC-34 hybrid cells derived from embryonic mouse spinal cord cells. NSC-34 cells irradiated at 25Gy were decreased the cell viability in a time and dose dependent manner. The decrease in cell viability induced by the irradiation was blocked by catalase. Antagonists of the N-methyl-D-aspartate (NMDA) receptor, including D-2-amino-5-phosphonovaleric acid (APV) and chlorokynurenic acid (CKA), similarly blocked radiational induced in cell viability. We performed morphological analysis of light and electron microscope. NSC-34 cells irradiated at 25Gy were decreased the cell density and increased lysosomes and vacuoles in the cytoplasm. Especially chromatin modification was observed. These results indicated that radiation was involved in the oxidant-initiated neurotoxicity and the compounds catalase, APV and CKA were shown to be neuroprotective against radiation.

  • PDF

Superoxide and Nitric Oxide Involvement in Enhancing of N-methyl-D-aspartate Receptor-Mediated Central Sensitization in the Chronic Post-ischemia Pain Model

  • Ryu, Tae-Ha;Jung, Kyung-Young;Ha, Mi-Jin;Kwak, Kyung-Hwa;Lim, Dong-Gun;Hong, Jung-Gil
    • The Korean Journal of Pain
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • Background: Recent studies indicate that reactive oxygen species (ROS) are involved in persistent pain, including neuropathic and inflammatory pain. Since the data suggest that ROS are involved in central sensitization, the present study examines the levels of activated N-methyl-D-aspartate (NMDA) receptors in the dorsal horn after an exogenous supply of three antioxidants in rats with chronic post-ischemia pain (CPIP). This serves as an animal model of complex regional pain syndrome type-I induced by hindpaw ischemia/reperfusion injury. Methods: The application of tight-fitting O-rings for a period of three hours produced CPIP in male Sprague-Dawley rats. Allopurinol 4 mg/kg, allopurinol 40 mg/kg, superoxide dismutase (SOD) 4,000 U/kg, N-nitro-L-arginine methyl ester (L-NAME) 10 mg/kg and SOD 4,000 U/kg plus L-NAME 10 mg/kg were administered intraperitoneally just after O-ring application and on the first and second days after reperfusion. Mechanical allodynia was measured, and activation of the NMDA receptor subunit 1 (pNR1) of the lumbar spinal cord (L4-L6) was analyzed by the Western blot three days after reperfusion. Results: Allopurinol reduced mechanical allodynia and attenuated the enhancement of spinal pNR1 expression in CPIP rats. SOD and L-NAME also blocked spinal pNR1 in accordance with the reduced mechanical allodynia in rats with CPIP. Conclusions: The present data suggest the contribution of superoxide, produced via xanthine oxidase, and the participation of superoxide and nitric oxide as a precursor of peroxynitrite in NMDA mediated central sensitization. Finally, the findings support a therapeutic potential for the manipulation of superoxide and nitric oxide in ischemia/reperfusion related pain conditions.

[${^3H}MK-801$ Binding to the Synaptic Membranes of Rat Forebrains: Age-related Regulation by Glutamate, Glycine and Spermine

  • Cho, Jung-Sook;Kong, Jae-Yang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.2
    • /
    • pp.117-125
    • /
    • 1997
  • The N-methyl-D-aspartate (NMDA) receptor-mediated glutamatergic neurotransmission is involved in synaptic plasticity, developmental processes, learning and memory and many neuropathological disorders including age-related diseases. In the present study, regulation of the NMDA receptor properties by various ligands was investigated using $[^3H]MK-801$ binding studies in the synaptic membranes of young and aged rat forebrains. The binding in the presence of glutamate and glycine increased dramatically with growth between 1 and 6 weeks old, and thereafter declined gradually with aging. Glutamate, glycine or spermine respectively increased the binding with growth. Glutamate maintained the binding during aging, while glycine or spermine significantly decreased the binding in the aged brain. The maximum stimulation by glycine varied depending on the ages of brains. Greater sensitivity to glycine was observed at 1 week and 3 months and the sensitivity was significantly reduced in the aged brain. In contrast, spermine showed similar stimulation patterns in young and aged rats. These results indicated that the functional properties of the NMDA receptor-ion channel complex in young and aged rat forebrains are differentially regulated by agonists, and the reduction of the receptor function with normal aging may be, in some degree, due to the reduction of the receptor sensitivity to glycine.

  • PDF

Electrophysiological Characterization of AMPA and NMDA Receptors in Rat Dorsal Striatum

  • Jeun, Seung-Hyun;Cho, Hyeong-Seok;Kim, Ki-Jung;Li, Qing-Zhong;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.3
    • /
    • pp.209-214
    • /
    • 2009
  • The striatum receives glutamatergic afferents from the cortex and thalamus, and these synaptic transmissions are mediated by ${\alpha}$-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and N-methyl D-aspartate (NMDA) receptors. The purpose of this study was to characterize glutamate receptors by analyzing NMDA/AMPA ratio and rectification of AMPA and NMDA excitatory postsynaptic currents (EPSCs) using a whole-cell voltage-clamp method in the dorsal striatum. Receptor antagonists were used to isolate receptor or subunit specific EPSC, such as (DL)-2-amino-5-phosphonovaleric acid (APV), an NMDA receptor antagonist, ifenprodil, an NR2B antagonist, CNQX, an AMPA receptor antagonist and IEM-1460, a GluR2-lacking AMPA receptor blocker. AMPA and NMDA EPSCs were recorded at - 70 and + 40 mV, respectively. Rectification index was calculated by current ratio of EPSCs between + 50 and - 50 mV. NMDA/AMPA ratio was 0.20${\pm}$0.05, AMPA receptor ratio of GluR2-lacking/GluR2-containing subunit was 0.26${\pm}$0.05 and NMDA receptor ratio of NR2B/NR2A subunit was 0.32${\pm}$0.03. The rectification index (control 2.39${\pm}$0.27) was decreased in the presence of both APV and combination of APV and IEM-1460 (1.02${\pm}$0.11 and 0.93${\pm}$0.09, respectively). These results suggest that the major components of the striatal glutamate receptors are GluR2-containing AMPA receptors and NR2A-containing NMDA receptors. Our results may provide useful information for corticostriatal synaptic transmission and plasticity studies.

Autism-Like Behavioral Phenotypes in Mice Treated with Systemic N-Methyl-D-Aspartate

  • Adil, Keremkleroo Jym;Gonzales, Edson Luck;Remonde, Chilly Gay;Boo, Kyung-Jun;Jeon, Se Jin;Shin, Chan Young
    • Biomolecules & Therapeutics
    • /
    • v.30 no.3
    • /
    • pp.232-237
    • /
    • 2022
  • Autism spectrum disorder (ASD) having core characteristics of social interaction problems and repetitive behaviors and interests affects individuals at varying degrees and comorbidities, making it difficult to determine the precise etiology underlying the symptoms. Given its heterogeneity, ASD is difficult to treat and the development of therapeutics is slow due to the scarcity of animal models that are easy to produce and screen with. Based on the theory of excitation/inhibition imbalance in the brain with ASD which involves glutamatergic and/or GABAergic neurotransmission, a pharmacologic agent to modulate these receptors might be a good starting point for modeling. N-methyl-D-aspartic acid (NMDA) is an amino acid derivative acting as a specific agonist at the NMDA receptor and therefore imitates the action of the neurotransmitter glutamate on that receptor. In contrast to glutamate, NMDA selectively binds to and regulates the NMDA receptor, but not other glutamate receptors such as AMPA and kainite receptors. Given this role, we aimed to determine whether NMDA administration could result in autistic-like behavior in adolescent mice. Both male and female mice were treated with saline or NMDA (50 and 75 mg/kg) and were tested on various behavior experiments. Interestingly, acute NMDA-treated mice showed social deficits and repetitive behavior similar to ASD phenotypes. These results support the excitation/inhibition imbalance theory of ASD and that NMDA injection can be used as a pharmacologic model of ASD-like behaviors.

Effect of an Ethanol Extract of Cassia obtusifolia Seeds on Alcohol-induced Memory Impairment (결명자 에탄올 추출물이 알코올로 유도로 유도한 기억 장애에 미치는 영향)

  • Kwon, Huiyoung;Cho, Eunbi;Jeon, Jieun;Lee, Young Choon;Kim, Dong Hyun
    • Journal of Life Science
    • /
    • v.29 no.5
    • /
    • pp.564-569
    • /
    • 2019
  • Heavy drinking disrupts the nervous system by activation of GABA receptors and inhibition of glutamate receptors, thereby preventing short-term memory formation. Degradation of cognition by alcohol induces blackouts, and it can lead to alcoholic dementia if repeated. Therefore, drugs need to be developed to prevent alcohol-induced blackout. In this study, we confirmed the effect of an ethanol extract of Cassia obtusifolia seeds (COE) on alcohol-induced memory impairment. The effects of COE and ethanol on cognitive functions mice were examined using the passive avoidance and Y-maze tests. The manner in which alcohol affects long-term potentiation (LTP) in relation to the learning and memory was confirmed by electrophysiology performed on mouse hippocampal slices. We also measured N-methyl-D-aspartate (NMDA) receptor-mediated field excitatory synapses (fEPSPs), which have a known association with cognitive impairment caused by ethanol. Ethanol caused memory impairments in passive avoidance and Y-maze tests. COE prevented these ethanol-induced memory impairments in these tests. Ethanol also blocked LTP induction in the mouse hippocampus, and COE prevented this ethanol-induced LTP deficit. Ethanol decreased NMDA receptor-mediated fEPSPs in the mouse hippocampus, and this decrease was prevented by COE. These results suggest that COE might be useful in preventing alcohol-induced neurological dysfunctions, including blackouts.

The antidepressant action of 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid is mediated by phosphorylation of histone deacetylase 5

  • Park, Min Hyeop;Choi, Miyeon;Kim, Yong-Seok;Son, Hyeon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.2
    • /
    • pp.155-162
    • /
    • 2018
  • 3-(2-Carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP), a competitive N-methyl-D-aspartate (NMDA) receptor antagonist, produces rapid antidepressant-like effects in animal models of depression. However, the molecular mechanisms underlying these behavioral actions remain unknown. Here, we demonstrate that CPP rapidly stimulates histone deacetylase (HDAC) 5 phosphorylation and nuclear export in rat hippocampal neurons. These effects are accompanied by calcium/calmodulin kinase II (CaMKII) and protein kinase D (PKD) phosphorylation. Behavioral experiments revealed that viral-mediated hippocampal knockdown of HDAC5 blocked the antidepressant effects of CPP in stressed animals. Taken together, our results imply that CPP acts via HDAC5 and suggest that HDAC5 is a common regulator contributing to the antidepressant actions of NMDA receptor antagonists such as CPP.