• Title/Summary/Keyword: N-fertilization

Search Result 819, Processing Time 0.019 seconds

Fertilization Effects on Growth, Foliar Nutrients and Extract Concentrations in Ginkgo Seedlings (은행나무 묘목(苗木)에 대(對)한 시비(施肥)가 생장(生長) 및 엽내(葉內) 양분(養分)과 유용(有用) 추출물(抽出物) 농도(濃度)에 미치는 영향(影響))

  • Son, Yowhan;Kim, Zin-Suh;Hwang, Jae Hong;Park, Jung Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.1
    • /
    • pp.98-105
    • /
    • 1998
  • We measured seedling growth, foliar nutrient and extract concentrations of 3-year-old Ginkgo biloba seedlings growing in a nursery following a single fertilization with nitrogen (N), phosphorus (P) and nitrogen plus phosphorus (N+P) fertilizers. Fertilization did not change foliage, stem and root biomass of the seedlings except for the high N+P treatment, Foliar N and P concentrations following fertilization varied according to the amount of fertilizers. In general, foliar N and P concentrations increased with fertilization, but fertilization with 400kg N/ha and 100kg P/ha decreased foliar N and P concentrations, respectively. Seedling growth and foliar nutrient concentrations showed that N and P were the growth-limiting nutrients in our study site. It was found that fertilization reduced the concentrations of secondary metabolites (Ginkgo flavon glycosides and terpene lactones) in foliages. It seemed there was a relationship between foliage biomass production and secondary chemicals in G. biloba seedlings.

  • PDF

Effect of Nitrogen Application Rates on Nitrous Oxide Emission during Crop Cultivations in Upland Soil

  • Lee, Jong-Eun;Yun, Yeo-Uk;Choi, Moon-Tae;Jung, Suck-Kee;Nam, Yun-Gyu;Pramanik, Prabhat;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.3
    • /
    • pp.205-211
    • /
    • 2012
  • BACKGROUND: Generally, nitrogen (N) fertilization higher than the recommended dose is applied during vegetable cultivation to increase productivity. But higher N fertilization also increases the concentrations of nitrate ions and nitrous oxide in soil. In this experiment, the impact of N fertilization was studied on nitrous oxide ($N_2O$) emission to standardize the optimum fertilization level for minimizing $N_2O$ emission as well as increasing crop productivity. Herein, we developed $N_2O$ emission inventory for upland soil region during red pepper and Chinese milk vetch cultivation. METHODS AND RESULTS: Nitrogen fertilizers were applied at different rates to study their effect on $N_2O$ emission during red pepper and Chinese milk vetch cultivation. The gas samples were collected by static closed chamber method and $N_2O$ concentration was measured by gas chromatography. The total $N_2O$ flux was steadily increased due to increasing N fertilization level, though the overall pattern of $N_2O$ emission dynamics was same. Application of N fertilization higher than the recommended dose increased the values of both seasonal $N_2O$ flux (94.5% for Chinese cabbage and 30.7% for red pepper) and $N_2O$ emission per unit crop yield (77.9% for Chinese cabbage and 23.2% for red pepper). Nitrous oxide inventory revealed that the $N_2O$ emission due to unit amount of N application from short-duration vegetable field in fall (autumn) season (6.36 kg/ha) was almost 70% higher than that during summer season. CONCLUSION: Application of excess N-fertilizers increased seasonal $N_2O$ flux especially the $N_2O$ flux per unit yield during both Chinese cabbage and red pepper cultivation. This suggested that the higher N fertilization than the recommended dose actually facilitates $N_2O$ emission than boosting plant productivity. The $N_2O$ inventory for upland farming in temperate region like Korea revealed that $N_2O$ flux due to unit amount of N-fertilizer application for Chinese cabbage in fall (autumn) season was comparatively higher than that of summer vegetables like red pepper. Therefore, the judicious N fertilization following recommended dose is required to suppress $N_2O$ emission with high vegetable productivity in upland soils.

The Growth Pattern of Chicory (Cichorium intybus L. var. foliosum)as to the Level of Nitrogen Fertilization (질소 시비수준에 따른 치커리(Cichorium intybus L. var. foliosum)의 생육 양상)

  • 박권우;장매희;원재희;장광호
    • Journal of Bio-Environment Control
    • /
    • v.3 no.2
    • /
    • pp.145-150
    • /
    • 1994
  • This study was carried out with different nitrogen fertilization levels for the purpose of basic information of culture of chicory (Cichorium intybus L. var. foliosum) in Korea. Treatment level of nitrogen fertilization was separated as 0, 10, 20, and 30kgN/10a. Though the apparent growth of chicory was increased as the increasing level of nitrogen fertilization, the deterous effects such as tipburn and bolting were increased. The treatment of 15-25kgN/10a was suitable for the production of chicory having high quality and commercial value.

  • PDF

the Effects of Shade and N Fertilization on the Dry Matter Production of Orchargrass (비음과 질소시비가 Orchargrass의 건물생산에 미치는 영향)

  • 이주삼
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.11 no.3
    • /
    • pp.175-181
    • /
    • 1991
  • The purpose of this experiment was to evaluate the effects of shade and levels of N fertilization on the dry matter yield and chemical compositions of orchardgrass grown under floor of chestnut tree. Shading conditions consist of $S_0$, (full light), $S_1$, (about 6OC4 shade) and $S_2$, (about 70% shade). And, nitrogen fertilizer was applied at 3 levels, O($N_0$), 12($N_1$), and 30($N_2$) kg per 10a, respectively. The results are may be summarized as follows: 1. Maximum total dry matter yield of $S_0$, was obtained about 1.28 ton/lOa at $N_2$, level. But, total dry matter yields of N levels in $S_1$, and $S_2$, were decreased about 42-45% compared with $S_0$. 2. The response of the dry matter yield to N fertilization were differences between shading and levels of N. Thus, the dry matter yield of $S_1$, increased almost linear up to about 30 kg/l0a level, while the dry matter yield of S, was increased slightly up to 30 kgIl0a. But. $S_2$, was increased up to 12 kg/lOa and then decreased slightly with N fertilization over the 12 kg/l0a. 3. Average increase in total dry matter yield to N fertilization were 23.85 kg, 7.97 kg and 5.08 kg DM for $S_0$, $S_1$, and $S_2$, respectively. 4. The level of 12 kg N/lOa is the limiting N level to obtain dry matter production under 60-709 shading conditions. 5. The contents of crude protein arid nitrate nitrogen were increased with shading and incremental N fertilization up to 30 kg/l0a. But, water soluble carbohydrate content was decreased greatly with high shading and high levels of N. 6. Nitrate nitrogen content indicated highly significant positive correlation with crude protein, but significant negative correlation with water soluble carbohydrate content. 7. At 30 kg N level with $S_1$, was necessary to exceed the potentially toxic nitrate nitrogen level of 0.20%.

  • PDF

Recommendation of Nitrogen Fertilization for Cucumber from Relationship between Soil Nitrate Nitrogen and Yield (토양의 질산태 질소와 수량과의 관계를 통한 오이의 질소 시비량 설정)

  • Lim, Tae-Jun;Hong, Soon-Dal;Kim, Seung-Heui;Park, Jin-Myeon
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.3
    • /
    • pp.223-227
    • /
    • 2007
  • This study was carried out to establish the reasonable level of nitrogen (N) fertilization based on soil nitrate nitrogen $(NO_3-N)$ content for cucumber (Cucumis sativus L.) under plastic film house. Cucumber plants were cultivated with standard and free N fertilization in eight soils which had various amount of $NO_3-N$ ranging from 67 to 343 mg/kg. The yield of cucumber was in the range of 1006 to 2369 g/plant depending on the nitrogen supplying capability of soils. The amount of $NO_3-N$ in the soil was negatively correlated with agronomic efficiency (AE) and N use efficiency (NUE). The critical level of soil $NO_3-N$ content for cucumber in N free fertilization was found to be about 260 mg/kg in Cate-Nelson analysis of variance between soil $NO_3-N$ and AE or NUE. Also the same critical soil $NO_3-N$ content was found in the yield and amount of N uptake of cucumber under N free fertilization. A standard N fertilization was required when soil $NO_3-N$ content was below 70 mg/kg. The optimal application rate of N fertilizer for cucumber in the soils containing $NO_3-N$ between 260-70 mg/kg could be recommended by the equation Y=-1.032X+269.2 (Y: N fertilization rate, kg/ha; X : soil $NO_3-N$ content mg/kg).

Growth and Tissue Nutrient Responses of Fraxinus rhynchophylla, Fraxinus mandshurica, Pinus koraiensis, and Abies holophylla Seedlings Fertilized with Nitrogen, Phosphorus, and Potassium

  • Park, Byung-Bae;Byun, Jae-Kyong;Park, Pil-Sun;Lee, Soo-Won;Kim, Woo-Sung
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.2
    • /
    • pp.186-196
    • /
    • 2010
  • Fertilization increases the crop productivity and produces high quality seedlings for plantation. We quantitatively measured both physical performances and nutrient responses of Fraxinus rhynchophylla, Fraxinus mandshurica, Pinus koraiensis, and Abies holophylla seedlings, which are commercially planted species in Korea, to nitrogen, phosphorus, and potassium fertilization. We analyzed the growth performances by using Dickson's quality index (QI) and the nutrient status by using vector diagnosis. Nitrogen or phosphorus treatment increased height and root collar diameter growth of F. rhynchophylla and F. mandshurica, however, did not increase those of P. koraiensis and A. holophylla. The order of QI was N > P > K > control for F. rhynchophylla, P ${\geq}$ N > Control ${\geq}$ P for F. mandshurica, P > Control ${\geq}$ K > N for P. koraiensis and A. holophylla. In F. rhynchophylla, fertilization diluted N concentration in tissues by 5-25% because growth responses were higher than fertilization uptake. P. koraiensis and A. holophylla showed N excess showing "toxic accumulation". F. rhynchophylla and F. mandshurica showed P deficiency with P fertilization, however, P. koraiensis and A. holophylla showed "luxury accumulation". Vector diagnosis indicated that more fertilization was applicable for F. rhynchophylla and F. mandshurica, and high fertilization rates were inefficient for P. koraiensis and A. holophylla. Both QI and vector diagnosis can be applied to verify seedling quality in the light of growth responses and nutrient status in fertilization trials.

Yield and Free Sugar Contents of Burdock (Arctium lappa L.) depending on Nitrogen Levels

  • Lee, Ye-Jin;Sung, Jwa-Kyung;Lee, Seul-Bi;Lim, Jung-Eun;Song, Yo-Sung;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.677-681
    • /
    • 2016
  • Excessive nitrogen fertilization influences crop yields and quality as well as environmental pollution. In this study, yields, nitrogen use efficiency and free sugar contents of burdock (Arctium lappa L.) were evaluated at different levels of nitrogen fertilization. Nitrogen fertilizer was applied at 5 levels (0, 50, 100, 150, 200%) based on the conventional fertilization ($N=230kg\;ha^{-1}$), and phosphate and potassium fertilizer were treated by conventional P and K fertilization ($P_2O_5-K_2O=140-210kg\;ha^{-1}$) in all plots. The root yields of burdock were the highest in N 100~150% treatment plots. Nitrogen use efficiency and nitrogen recovery decreased from over N 150% treatment. Nitrogen uptake of root was greater than that of shoot in N 50~200% treatments. Fructose contents in root were inversely proportional to the level of nitrogen fertilization. As considering nitrogen recovery and root quality, economical burdock yield was obtained in N $230kg\;ha^{-1}$.

On-the-go Nitrogen Sensing and Fertilizer Control for Site-specific Crop Management

  • Kim, Y.;Reid, J.F.;Han, S.
    • Agricultural and Biosystems Engineering
    • /
    • v.7 no.1
    • /
    • pp.18-26
    • /
    • 2006
  • In-field site-specific nitrogen (N) management increases crop yield, reduces N application to minimize the risk of nitrate contamination of ground water, and thus reduces farming cost. Real-time N sensing and fertilization is required for efficient N management. An 'on-the-go' site-specific N management system was developed and evaluated for the supplemental N application to com (Zea mays L.). This real-time N sensing and fertilization system monitored and assessed N fertilization needs using a vision-based spectral sensor and controlled the appropriate variable N rate according to N deficiency level estimated from spectral signature of crop canopies. Sensor inputs included ambient illumination, camera parameters, and image histogram of three spectral regions (red, green, and near-infrared). The real-time sensor-based supplemental N treatment improved crop N status and increased yield over most plots. The largest yield increase was achieved in plots with low initial N treatment combined with supplemental variable-rate application. Yield data for plots where N was applied the latest in the season resulted in a reduced impact on supplemental N. For plots with no supplemental N application, yield increased gradually with initial N treatment, but any N application more than 101 kg/ha had minimal impact on yield.

  • PDF

Fertilization of N and Si to Sustain Grain Yield and Growth Characteristics of Rice after Winter Greenhouse Water-melon Cropping

  • Cho, Young-Son;Jeon, Weon-Tae;Park, Chang-Young;Park, Ki-Do;Kang, Ui-Gum;Muthukumarasamy, Ramachandran
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.6
    • /
    • pp.505-512
    • /
    • 2006
  • In Korea, silicate fertilization (SF) is being practiced every four years to enhance rice production. However, the relationship between nitrogen (N) and SF in view of growth characteristics and grain yield of rice has not been examined after watermelon cropping in plastic film house. This study was carried out to identify useful critical N and Si fertilizer levels to sustain grain yield and to improve N use efficiency for rice. The watermelon-rice cropping system has maintained for three seasons in each year from 1998 to 2001 by farmer before this experiment. Experiments on N and Si fertilization levels were evaluated with Hwayoungbyeo (Oryza sativa L.) in 2002 and 2003 at Uiryeong, Korea. The goal of this experiment was to find out the optimum N and Si levels to sustain rice yield by reducing excessive N fertilizer in watermelon-rice cropping system. Nitrogen fertilization (NF) levels were three ($0,\;57,\;114kg\;ha^{-1};0,\;50,\;100%$ of conventional NF amount) and five (0, 25, 50, 75, 100%) in 2002 and 2003, respectively, and combined with three SF levels ($70,\;130,\;180mg\;kg^{-1};100,\;150,\;200%$ which were adjusted with Si fertilizer in soil) were evaluated for the improvement of N and Si fertilization level in both years. Rice yielded 3.98-5.95 and 2.84-4.02 t/ha in 2002 and 2003, respectively. Our results showed the combinations of 50% and 100% of N with 200% level of Si produced the highest grain yield in both years, respectably. The grain yield was greatly improved in plot of N25% level when compared to conventional NF (Nl00%) in 2003. In conclusion, NF amount could be reduced about 50% compared to recommended level by specific fertilization of N and Si combination levels for rice growing and grain yield after cultivation watermelon in paddy field.

The Effects of Nitrogen Fertilization Levels on the Content of ${NH_4}^+$-N and ${NO_3}^-$-N in Soil of Zoysiagrass(Zoysia japonica ) and 'Suffolk' Kentucky Bluegrass(Poa pratensis) (한국잔디(Zoysia japonica)와 'Suffolk' Kentucky bluegrass(poa pratensis)에서 지소지용 수준이 토양중 ${NH_4}^+$-N와 ${NO_3}^-$-N 함량에 미치는 영향)

  • 김성태;육완방;이정재;김인섭;함성규
    • Asian Journal of Turfgrass Science
    • /
    • v.9 no.3
    • /
    • pp.207-212
    • /
    • 1995
  • This experiment was conducted to investigate the effect of the nitrogen fertilization levels on the content of $NH_4^+$-N in soil of 'Suffolk' Kentucky bluegrass and zoysiagrass. The results obtained are summarized as follows : 1.According to the nitrogen fertilization levels, the content of $NH_4^+$-N in soil of Kentucky blue-grass and zoysiagrass was not significantly different. The content of $NH_4^+$-N in soil of Kentucky bluegrass and zoysiagrass was highest in June and December and lowest in March and September. 2.The content of $NH_3^-$-N in soil was increased by increasing the nitrogen fertilization levels in both Kentucky bluegrass and zoysiagrass. However, the deeper the depth of soil the less the content of $NO_3^-$-N in soil. In 40~60cm soil depth, the content of $NO_3^-$-N in soil was lower than 10ppm in average. Even in June, which was the highest month of the content of $NO_3^-$-N in soil, the content of $NO_3^-$-N in soil was not overpassed the degree of 20ppm.

  • PDF