• Title/Summary/Keyword: N-doping

Search Result 703, Processing Time 0.029 seconds

Characterization of Ga-doped ZnO thin films prepared by RF magnetron sputtering method (RF 마그네트론 스퍼터링법으로 합성된 Ga-doped ZnO 박막의 특성평가)

  • Yun, Young-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.2
    • /
    • pp.73-77
    • /
    • 2021
  • Ga-doped ZnO thin films by RF magnetron sputtering process were synthesized according to the deposition conditions of O2 and Ar atmosphere gases, and rapid heat treatment (RTA) was performed at 600℃ in an N2 atmosphere. The thickness of the deposited ZnO : Ga thin film was measured, the crystal phase was investigated by XRD pattern analysis, and the microstructure of the thin film was observed by FE-SEM and AFM images. The intensity of the (002) plane of the X-ray diffraction pattern showed a significant difference depending on the deposition conditions of the thin films formed by O2 and Ar atmosphere gas types. In the case of a single thin f ilm doped with Ga under O2 conditions, a strong diffraction peak was observed. Under O2 and Ar conditions, in the case of a multilayer thin film with Ga doping, only a peak on the (002) plane with a somewhat weak intensity was shown. In the FE-SEM image, it was observed that the grain size of the surface of the thin film slightly increased as the thickness increased. In the case of a multilayer thin film with Ga doping under O2 and Ar atmosphere conditions, the specific resistance was 6.4 × 10-4 Ω·cm. In the case of a single thin film with Ga doping under O2 atmosphere conditions, the resistance of the thin film decreased. The resistance decreased as the thickness of the Ga-doped ZnO thin film increased to 2 ㎛, showing relatively a low specific resistance of 1.0 × 10-3 Ω·cm.

Optimization of the Phosphorus Doped BSF Doping Profile and Formation Method for N-type Bifacial Solar Cells

  • Cui, Jian;Ahn, Shihyun;Balaji, Nagarajan;Park, Cheolmin;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.4 no.2
    • /
    • pp.31-41
    • /
    • 2016
  • n-type PERT (passivated emitter, rear totally diffused) bifacial solar cells with boron and phosphorus diffusion as p+ emitter and n+ BSF (back surface field) have attracted significant research interest recently. In this work, the influences of wafer thickness, bulk lifetime, emitter, BSF on the photovoltaic characteristics of solar cells are discussed. The performance of the solar cell is determined by using one-dimensional solar cell simulation software PC1D. The simulation results show that the key role of the BSF is to decrease the surface doping concentration reducing the recombination and thus, increasing the cell efficiency. A lightly phosphorus doped BSF (LD BSF) was experimentally optimized to get low surface dopant concentration for n type bifacial solar cells. Pre-oxidation combined with a multi-plateau drive-in, using limited source diffusion was carried out before pre-deposition. It could reduce the surface dopant concentration with minimal impact on the sheet resistance.

Electrical and Optical Characteristics of Isoelectronic Al-doped GaN Films

  • Lee, Jae-Hoon;Ko, Hyun-Min;Park, Jae-Hee;Hahm, Sung-Ho;Lee, Jung-Hee
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2002.11a
    • /
    • pp.81-84
    • /
    • 2002
  • The effects of the isoelectronic AI-doping of GaN grown by metal organic chemical vapor deposition were investigated for the first time using scanning electron microscopy (SEM), Hall measurements, photoluminescence (PL), and time-resolved PL. When a certain amount of Al was incorporated into the GaN films, the room temperature photoluminescence intensity of the films was approximately two orders larger than that of the undoped GaN. More importantly, the electron mobility significantly increased from 130 for the undoped sample to $500\textrm{cm}^2/Vs$ for the sample grown at a TMAl flow rate of $10{\mu}mol/min$, while the unintentional background concentration only increased slightly relative to the TMAl flow. The incorporation of Al as an isoelectronic dopant into GaN was easy during MOCVD growth and significantly improved the optical and electrical properties of the film. This was believed to result from a reduction in the dislocation-related non-radiative recombination centers or certain other defects due to the isoelectronic Al-doping.

  • PDF

The Mg Solid Solution far the P-type Activation of GaN Thin Films Grown by Metal-Organic Chemical Vapor Deposition

  • Kim, KeungJoo;Chung, SangJo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.4
    • /
    • pp.24-29
    • /
    • 2001
  • GaN films were grown for various Mg doping concentrations in metal-organic chemical vapor deposition. Below the Mg concentration of 10$^{19}$ ㎤, the thermally annealed sample shows the compensated phase to n-type GaN in Hall measurement. In the MB concentration of 4$\times$10$^{19}$ ㎤ corresponding to the hole carrier concentration of 2.6$\times$1$^{19}$ ㎤ there exists a photoluminescence center of the donor and the acceptor pair transition of the 3.28-eV band. This center is correlated with the defects for a shallow donor of the $V_{Ga}$ and for an acceptor of $Mg_{Ga}$ . The acceptor level shows the binding energy of 0.2-0.25 eV, which was observed by the photon energy of the photocurrent signal of 3.02-3.31 eV. Above the Mg concentration of 4$\times$10$^{19}$ ㎤, both the Mg doping level and Mg concentration were saturated and there Is a photoluminescence center of a deep donor and an acceptor pair transition of the 2.76-eV blue band.

  • PDF

Mg Delta-Doping Effect on a Deep Hole Center Related to Electrical Activation of a p-Type GaN Thin Film

  • Park, Hyo-Yeol;Jeon, Kyoung-Nam;Kim, Keun-Joo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.1
    • /
    • pp.37-41
    • /
    • 2010
  • The authors investigated the photoluminescence (PL) and the electron paramagnetic resonance (EPR) from an magnesium (Mg)-doped GaN thin film with a delta-doped layer. The regularly doped sample shows a PL peak at 2.776 eV for the as-grown sample, and the peak shifts to 2.904 eV and increases in intensity for the annealed sample. The delta-doped sample also shows the same PL peak as does the regularly doped sample. However, only the annealed delta-doped layer shows a sharp EPR with a small isotropic Lande g-factor, $g_{II}$, of 2.029. This resonance is attributed to the delta-doped layer, which forms a hole-bound Mg-N atomic structure instead of the $Mg_{Ga}-V_N$ defect complex, indicating that the delta-doped sample was not optically activated to form PL centers but was instead electrically activated to form a hole-bound state.

Effect of metal buffer layers on the growth of GaN on Si substrates (실리콘 기판위에 금속 완충층을 이용한 GaN 성장과 특성분석)

  • Lee, Jun Hyeong;Yu, Yeon Su;Ahn, Hyung Soo;Yu, Young Moon;Yang, Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.4
    • /
    • pp.161-166
    • /
    • 2013
  • AlN buffer layers have been used for the growth of GaN layers on Si substrates. However, the doping of high concentration of carriers into AlN layers is still not easy, therefore it may cause the increase of series resistance when it is used for the electrical or optical devices. In this work, to improve such a problem, the growth of GaN layers on Si substrates were performed using metal buffer layers instead of AlN buffer layer. We tried combinations of Ti, Al, Cr and Au as metal buffer layers for the growth of GaN on Si substrates. Surface morphology was measured by optical microscope and scanning electron microscope (SEM), and optical properties and crystalline quality were measured by photoluminescence (PL) and X-ray diffractometer (XRD), respectively. Electrical resistances for both cases of AlN and metal buffer layer were compared by current-voltage (I-V) measurement.

Doping-free Transparent Conducting Schottky Type Heterojunction Solar Cells

  • Kim, Joon-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.209-209
    • /
    • 2012
  • High-efficient transparent conductive oxide (TCO) film-embedding Si heterojunction solar cells were fabricated. An additional doping was not applied for heterojunction solar cells due to the spontaneous junction formation between TCO films and an n-type Si substrate. Three different TCO coatings were formed by sputtering method for an Al-doped ZnO (AZO) film, an indium-tin-oxide (ITO) film and double stacks of ITO/AZO films. An improved crystalline ITO film was grown on an AZO template upon hetero-epitaxial growth. This double TCO films-embedding Si heterojunction solar cell provided significantly enhanced efficiency of 9.23% as compared to the single TCO/Si devices. The effective arrangement of TCO films (ITO/AZO) provides benefits of a lower front contact resistance and a smaller band offset to Si leading enhanced photovoltaic performances. This demonstrates a potential scheme of the effective TCO film-embedding heterojunction Si solar cells.

  • PDF

Determination of Niflumic Acid in Human Urine by Gas Chromatography/Negative Chemical lonization Mass Spectrometry

  • Myung, Seung-Woon;Kim, Myung-Soo;Cho, Hyun-Woo;Park, Jong-Sei
    • Archives of Pharmacal Research
    • /
    • v.19 no.6
    • /
    • pp.566-569
    • /
    • 1996
  • A sensitivity method has been developed for the detection and determination of niflmic acid(NA) in human urine. Samples were extracted with diethylether. Flunixin (FN) was added to the sample prior to extraction as an internal standard. Niflumic acid was converted to its methyl derivative and analyzed by capillary gas chromatography/negative chemical isonization mass spectrometry. Using selected ion monitoring (SIM), the levels of NA down to 5 pg/ml could be detected in 5 ml spiked urine sample. Calibration curve was linear over the range of 0.5 ppm-50 ppm. The recovery of niflumic acid from urine at 40 pg/ml was to be $91.7{\pm}3.8(n=3)$ and the coefficient of variation was 4.1%.

  • PDF

Effect of Si-doping on the luminescence properties of InGaN/GaN green LED with graded short-period superlattice

  • Cho, Il-Wook;Lee, Dong Hyun;Ryu, Mee-Yi;Kim, Jin Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.280.1-280.1
    • /
    • 2016
  • Generally InGaN/GaN green light emitting diode (LED) exhibits the low quantum efficiency (QE) due to the large lattice mismatch between InGaN and GaN. The QE of InGaN-based multiple quantum wells (MQWs) is drastically decreased when an emission wavelength shifts from blue to green wavelength, so called "green gap". The "green gap" has been explained by quantum confined Stark effect (QCSE) caused by a large lattice mismatch. In order to improve the QE of green LED, undoped graded short-period InGaN/GaN superlattice (GSL) and Si-doped GSL (SiGSL) structures below the 5-period InGaN/GaN MQWs were grown on the patterned sapphire substrates. The luminescence properties of InGaN/GaN green LEDs have been investigated by using photoluminescence (PL) and time-resolved PL (TRPL) measurements. The PL intensity of SiGSL sample measured at 10 K shows stronger about 1.3 times compared to that of undoped GSL sample, and the PL peak wavelength at 10 K appears at 532 and 525 nm for SiGSL and undoped GSL, respectively. Furthermore, the PL decay of SiGSL measured at 10 K becomes faster than that of undoped GSL. The faster decay for SiGSL is attributed to the increased wavefunction overlap between electron and hole due to the screening of piezoelectric field by doped carriers. These PL and TRPL results indicate that the QE of InGaN/GaN green LED with GSL structure can be improved by Si-doping.

  • PDF

Semiconductor CdTe-Doped CdO Thin Films: Impact of Hydrogenation on the Optoelectronic Properties

  • Dakhel, Aqeel Aziz;Jaafar, Adnan
    • Korean Journal of Materials Research
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • Doping or incorporation with exotic elements are two manners to regulate the optoelectronic properties of transparent conducting (TCO) cadmium oxide (CdO). Nevertheless, the method of doping host CdO by CdTe semiconductor is of high importance. The structural, optical, and electrical properties of CdTe-doped CdO films are studied for the sake of promoting their conducting parameters (CPs), including their conductivity, carrier concentration, and carrier mobility, along with transparency in the NIR spectral region; these are then compared with the influence of doping the host CdO by pure Te ions. X-ray fluorescence (XRF), X-ray diffraction (XRD), optical absorption spectroscopy, and electrical measurements are used to characterise the deposited films prepared by thermal evaporation. Numerous results are presented and discussed in this work; among these results, the optical properties are studied through a merging of concurrent BGN (redshift) and BGW (blue shift) effects as a consequence of doping processes. The impact of hydrogenation on the characterisations of the prepared films is investigated; it has no qualitative effect on the crystalline structure. However, it is found that TCO-CPs are improved by the process of CdTe doping followed by hydrogenation. The utmost TCO-CP improvements are found with host CdO film including ~ 1 %Te, in which the resistivity decreases by ~ 750 %, carrier concentration increases by 355 %, and mobility increases by ~ 90 % due to the increase of Ncarr. The improvement of TCO-CPs by hydrogenation is attributed to the creation of O-vacancies because of H2 molecule dissociation in the presence of Te ions. These results reflect the potential of using semiconductor CdTe -doped CdO thin films in TCO applications. Nevertheless, improvements of the host CdO CPs with CdTe dopant are of a lesser degree compared with the case of doping the host CdO with pure Te ions.