• Title/Summary/Keyword: N-acetylcysteine (NAC)

Search Result 66, Processing Time 0.032 seconds

The Effect of Post-Treatment N-Acetylcysteine in LPS-Induced Acute Lung Injury of Rats

  • Choi, Jae Sung;Lee, Ho Sung;Seo, Ki Hyun;Na, Ju Ock;Kim, Yong Hoon;Uh, Soo Taek;Park, Choon Sik;Oh, Mee Hye;Lee, Sang Han;Kim, Young Tong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.73 no.1
    • /
    • pp.22-31
    • /
    • 2012
  • Background: Oxidation plays an important role in acute lung injury. This study was conducted in order to elucidate the effect of repetitive post-treatment of N-acetylcysteine (NAC) in lipopolysaccaride (LPS)-induced acute lung injury (ALI) of rats. Methods: Six-week-old male Sprague-Dawley rats were divided into 4 groups. LPS (Escherichia coli 5 mg/kg) was administered intravenously via the tail vein. NAC (20 mg/kg) was injected intraperitoneally 3, 6, and 12 hours after LPS injection. Broncho-alveolar lavage fluid (BALF) and lung tissues were obtained to evaluate the ALI at 24 hours after LPS injection. The concentration of tumor necrosis factor ${\alpha}$ (TNF-${\alpha}$) and interleukin $1{\beta}$ (IL-$1{\beta}$) were measured in BALF. Nuclear factor ${\kappa}B$ (NF-${\kappa}B$), lipid peroxidation (LPO), and myeloperoxidase (MPO) were measured using lung tissues. Micro-computed tomography (micro-CT) images were examined in each group at 72 hours apart from the main experiments in order to observe the delayed effects of NAC. Results: TNF-${\alpha}$ and IL-$1{\beta}$ concentration in BALF were not different between LPS and NAC treatment groups. The concentration of LPO in NAC treatment group was significantly lower than that of LPS group ($5.5{\pm}2.8$ nmol/mL vs. $16.5{\pm}1.6$ nmol/mL) (p=0.001). The activity of MPO in NAC treatment group was significantly lower than that of LPS group ($6.4{\pm}1.8$ unit/g vs. $11.2{\pm}6.3$ unit/g, tissue) (p<0.048). The concentration of NF-${\kappa}B$ in NAC treatment group was significantly lower than that of LPS group ($0.3{\pm}0.1\;ng/{\mu}L$ vs. $0.4{\pm}0.2\;ng/{\mu}L$) (p=0.0001). Micro-CT showed less extent of lung injury in NAC treatment than LPS group. Conclusion: After induction of ALI with lipopolysaccharide, the therapeutic administration of NAC partially attenuated the extent of ALI through the inhibition of NF-${\kappa}B$ activation.

Enhanced Production of hCTLA4Ig by Suppressing Cell Death in Transgenic Rice Cell Suspension Cultures (형질전환 벼 현탁세포 배양에서 세포 사멸 억제를 통한 hCTLA4Ig 생산성 증대)

  • Kim, Myong-Sik;Nam, Hyung-Jin;Kim, Min-Sub;Kwon, Jun-Young;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.28 no.4
    • /
    • pp.260-268
    • /
    • 2013
  • Transgenic plant cell cultures are an attractive expression system for the production of industrial and pharmaceutical proteins because of their advantages in safety and low production cost. Human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig) was produced and secreted when sugar was depleted in culture medium by transgenic rice cell lines (Oryza sativa L.) using RAmy3D promoter. Due to the production of the target protein by sugar depletion, concomitant occurrence of cell death is inevitable. For that reason, inhibition of cell death for enhancing productivity was necessary for the production period without energy sources. Supplementation of 0.1 mM sodium nitroprusside improved cell viability by 1.4-fold and maximum hCTLA4Ig production by 1.3-fold compared to those of control. Addition of 1 and 10 mM glutathione, N-acetylcysteine (NAC), and nicotinamide inhibited apoptotic-like programmed cell death by decreasing the activity of reactive oxygen species. Production hCTLA4Ig was enhanced 1.4-, 1.25-, and 1.15-fold with 10 mM NAC, 1 mM NAC, and 1 mM glutathione, respectively. In addition, it was found that the supplementation of NAC enhanced the cell viability.

The antioxidant roles of L-carnitine and N-acetyl cysteine against oxidative stress on human sperm functional parameters during vitrification

  • Ghorbani, Fatemeh;Nasiri, Zohreh;Koohestanidehaghi, Yeganeh;Lorian, Keivan
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.4
    • /
    • pp.316-321
    • /
    • 2021
  • Objective: Amino acids can protect sperm structure in cryopreservation due to their antioxidant properties. Therefore, the present study aimed to investigate the protective effect of L-carnitine (LC) and N-acetyl cysteine (NAC) on motility parameters, plasma membrane integrity (PMI), mitochondrial membrane potential (MMP), DNA damage, and human sperm intracellular reactive oxygen species (ROS) during vitrification. Methods: Twenty normal human sperm samples were examined. Each sample was divided into six equal groups: LC (1 and 10 mM), NAC (5 and 10 mM), and cryopreserved and fresh control groups. Results: The groups treated with LC and NAC showed favorable findings in terms of motility parameters, DNA damage, and MMP. Significantly higher levels of intracellular ROS were observed in all cryopreserved groups than in the fresh group (p≤0.05). The presence of LC and NAC at both concentrations caused an increase in PMI, MMP, and progressive motility parameters, as well as a significant reduction in intracellular ROS compared to the control group (p≤0.05). The concentrations of the amino acids did not show any significant effect. Conclusion: LC and NAC are promising as potential additives in sperm cryopreservation.

Effects of Benzyl Isothiocyanate and Its N-Acetylcysteine Conjugate on Induction of Detoxification Enzymes in Hepa1c1c7 Mouse Hepatoma Cells

  • Hwang, Eun-Sun
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.4
    • /
    • pp.268-273
    • /
    • 2014
  • The induction of detoxification enzymes by benzyl isothiocyanate (BITC) and its synthetic N-acetyl-L-cysteine (NAC) conjugate (NAC-BITC) was examined in Hepa1c1c7 murine hepatoma cells. BITC and NAC-BITC inhibited Hepa1c1c7 cell growth in a dose-dependent manner. Cell growth was 4.5~57.2% lower in Hepa1c1c7 cells treated with $0.1{\sim}1.0{\mu}M$ BITC than in control-treated Hepa1c1c7 cells. The NAC-BITC treatment had a similar inhibitory pattern on Hepa1c1c7 cell growth; $0.5{\mu}M$ and $10{\mu}M$ NAC-BITC decreased cell growth by 13.6% and 47.4%, respectively. Treatment of Hepa1c1c7 cells with $0.1{\sim}2.0{\mu}M$ BITC also elicited a dose-response effect on the induction of quinone reductase quinone reductase (QR) activity and QR mRNA expression. Treatment with $1{\mu}M$ and $2{\mu}M$ BITC caused 1.8- and 2.8-fold inductions of QR mRNA, respectively. By comparison, treatment with $1{\mu}M$ and $2{\mu}M$ NAC-BITC caused 1.6-and 1.9-fold inductions of QR mRNA, respectively. Cytochrome P450 (CYP) 1A1 and CYP2E1 induction were lower in $0.1{\sim}2{\mu}M$ BITC-treated cells than in control-treated cells. CYP2E1 activity was 1.2-fold greater in $0.1{\mu}M$ NAC-BITC-treated cells than in control-treated cells. However, the CYP2E1 activity of cells treated with higher concentrations (i.e., $1{\sim}2{\mu}M$) of NAC-BITC was similar to the activity of control-treated cells. Considering the potential of isothiocyanatesto prevent cancer, these results provide support for the use of BITC and NAC-BITC conjugates as chemopreventive agents.

Effects of N-acetylcystein on changes in parvalbumin-positive interneurons in the hippocampus after carbon monoxide poisoning (급성 일산화탄소 중독 후 해마에서 Parvalbumin 양성 중간뉴론의 변화에 대한 N-acetylcystein의 효과)

  • Kim, Seon Tae;Yoo, Su Jin
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.19 no.2
    • /
    • pp.100-109
    • /
    • 2021
  • Purpose: The purpose of this study was to investigate effect of N-acetylcysteine (NAC) on the injury of putative parvalbumin positive interneurons defined by molecular marker and hippocampal long-term potentiation (LTP), a marker of neural plasticity following acute carbon monoxide (CO) poisoning. Methods: Adult Sprague-Dawley rats were exposed to 1100 ppm CO for 40 minutes followed by 3000 ppm CO for 20 minutes. Animals received daily intraperitoneal injection of NAC (150 mg/kg) for 5 days after CO exposure. Changes in learning and spatial memory were evaluated by Y-maze test 5 days after the poisoning. In vivo LTP in hippocampal CA1 area was evaluated by using extracellular electrophysiological technique. Immunohistochemical staining were adopted to observe expressional damages of parvalbumin (PV) immunoreactive interneurons in the hippocampus following the poisoning. Results: Acute CO intoxication resulted in no changes in memory performance at Y-maze test but a significant reduction of LTP in the in hippocampal CA1 area. There was also a significant reduction of PV (+) interneurons in the hippocampal CA1 area 5 days after CO poisoning. Daily treatment of NAC significantly improved hippocampal LTP impairment and reduced immunoreactivity for PV in the hippocampus following the acute CO poisoning. Conclusion: The results of this study suggest that reduction of hippocampal LTP and PV (+) interneurons in the hippocampus is sensitive indicator for brain injury and daily NAC injections can be the alternative therapeutics for the injury induced by acute CO poisoning.

Involvement of G1 arrest and caspase-3 activation in apoptosis induced by bovine lactoferricin

  • Yoo, Yung-Choon;Lee, Kyung-Bok
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.325.2-325.2
    • /
    • 2002
  • We investigated the effect of bovine lactoferricin (Lfcin-B) on cell cycle regulation and caspase activation in tumor cells. Treatment with Lfcin-B resulted in the production of intracellular reactive oxygen species (ROS) during apoptosis of THP-1 cells. Biochemical analysis revealed that Lfcin-B-induced apoptosis. the cell cycle arrest and caspase activation were completely abrogated by addition of an antioxidant such as N-acetylcysteine(NAC). (omitted)

  • PDF

Growth Factors Upregulated by Uric Acid Affect Guanine Deaminase-Induced Melanogenesis

  • Nan-Hyung Kim;Ai-Young Lee
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.89-96
    • /
    • 2023
  • Uric acid produced by guanine deaminase (GDA) is involved in photoaging and hyperpigmentation. Reactive oxygen species (ROS) generated by uric acid plays a role in photoaging. However, the mechanism by which uric acid stimulates melanogenesis in GDA-overexpressing keratinocytes is unclear. Keratinocyte-derived paracrine factors have been identified as important mechanisms of ultraviolet-induced melanogenesis. Therefore, the role of paracrine melanogenic growth factors in GDA-induced hypermelanosis mediated by uric acid was examined. The relationships between ROS and these growth factors were examined. Primary cultured normal keratinocytes overexpressed with wild type or mutant GDA and those treated with xanthine or uric acid in the presence or absence of allopurinol, H2O2, or N-acetylcysteine (NAC) were used in this study. Intracellular and extracellular bFGF and SCF levels were increased in keratinocytes by wild type, but not by loss-of-function mutants of GDA overexpression. Culture supernatants from GDA-overexpressing keratinocytes stimulated melanogenesis, which was restored by anti-bFGF and anti-SCF antibodies. Allopurinol treatment reduced the expression levels of bFGF and SCF in both GDA-overexpressing and normal keratinocytes exposed to exogenous xanthine; the exogenous uric acid increased their expression levels. H2O2-stimulated tyrosinase expression and melanogenesis were restored by NAC pretreatment. However, H2O2 or NAC did not upregulate or downregulate bFGF or SCF, respectively. Overall, uric acid could be involved in melanogenesis induced by GDA overexpression in keratinocytes via bFGF and SCF upregulation not via ROS generation.

Effects of Antioxidant on Oxidative Stress and Autophagy in Bronchial Epithelial Cells Exposed to Particulate Matter and Cigarette Smoke Extract

  • Hur, Jung;Rhee, Chin Kook;Jo, Yong Suk
    • Tuberculosis and Respiratory Diseases
    • /
    • v.85 no.3
    • /
    • pp.237-248
    • /
    • 2022
  • Background: We evaluated the effect of particulate matter (PM) and cigarette smoke extract (CSE) on bronchial epithelial cell survival, as well as oxidative stress and autophagy levels. Moreover, we aimed to assess the effect of the antioxidant N-acetylcysteine (NAC) on the adverse effects of PM and CSE exposure. Methods: Normal human bronchial epithelial cells (BEAS-2B cells) were exposed to urban PM with or without CSE, after which cytotoxic effects, including oxidative stress and autophagy levels, were measured. After identifying the toxic effects of urban PM and CSE exposure, the effects of NAC treatment on cell damage were evaluated. Results: Urban PM significantly decreased cell viability in a concentration-dependent manner, which was further aggravated by simultaneous treatment with CSE. Notably, pretreatment with NAC at 10 mM for 1 hour reversed the cytotoxic effects of PM and CSE co-exposure. Treatment with 1, 5, and 10 mM NAC was shown to decrease reactive oxygen species levels induced by exposure to both PM and CSE. Additionally, the autophagy response assessed via LC3B expression was increased by PM and CSE exposure, and this also attenuated by NAC treatment. Conclusion: The toxic effects of PM and CSE co-exposure on human bronchial epithelial cells, including decreased cell viability and increased oxidative stress and autophagy levels, could be partly prevented by NAC treatment.

Role of Reactive Oxygen Species in Transforming Growth Factor-β1-inuduced Fibronectin Secretion and α-Smooth Muscle Actin Expression in Human Lung Fibroblasts (사람 폐 섬유아세포의 전환성장인자-β1에 의한 fibronectin 분비와 α-smooth muscle actin 표현에 있어서 활성산소족의 역할)

  • Ha, Hunjoo;Yu, Mi-Ra;Uh, Soo-taek;Park, Choon Sik;Lee, Hi Bahl
    • Tuberculosis and Respiratory Diseases
    • /
    • v.58 no.3
    • /
    • pp.267-276
    • /
    • 2005
  • Background : The transforming growth $factor-{\beta}1$ ($TGF-{\beta}1$) plays a key role in lung fibrosis. However, the molecular mechanisms involved in $TGF-{\beta}1$-induced lung fibrosis are unclear. $TGF-{\beta}1$ is the key inducer of myofibroblast transdifferentiation via de novo synthesis of ${\alpha}-smooth$ muscle actin (${\alpha}-SMA$). Since $TGF-{\beta}1$ signals through reactive oxygen species (ROS) and ROS have been shown to induce accumulation of extracellular matrix (ECM) in various tissues, this study examined if ROS play a role in $TGF-{\beta}1$-induced fibronectin secretion and ${\alpha}-SMA$ expression in human lung fibroblasts, MRC-5 cells. Methods : Growth arrested and synchronized MRC-5 cells were stimulated with $TGF-{\beta}1$ (0.2-10 ng/ml) in the presence or absence of N-acetylcysteine (NAC) or diphenyleneiodonium (DPI) for up to 96 hours. Dichlorofluorescein (DCF)-sensitive cellular ROS were measured by FACScan and secreted fibronectin and cellular ${\alpha}-SMA$ by Western blot analysis. Results : $TGF-{\beta}1$ increased the level of fibronectin secretion and ${\alpha}-SMA$ expression in MRC-5 cells in a dosedependent manner. Both NAC (20 and 30 mM) and DPI (1 and $5{\mu}M$) significantly inhibited $TGF-{\beta}1$-induced fibronectin and ${\alpha}-SMA$ upregulation. The $TGF-{\beta}1$-induced cellular ROS level was also significantly reduced by NAC and DPI. Conclusions : The results suggest that NADPH oxidase-dependent ROS play an important role in $TGF-{\beta}1$-induced fibronectin secretion and ${\alpha}-SMA$ expression in MRC-5 cells, which leads to myofibroblast transdifferentiation and progressive lung fibrosis.

Rosuvastatin Induces ROS-mediated Apoptosis in Human Prostate Cancer PC-3 Cells (Rosuvastatin이 유도하는 ROS가 전립선암 PC-3 세포주의 세포사멸 유도에 미치는 영향)

  • Choi, Hyeun Deok;Baik, Jong Jin;Kim, Sang Hun;Yu, Sun Nyoung;Chun, Sung Hak;Kim, Young Wook;Nam, Hyo Won;Kim, Kwang Youn;Ahn, Soon Cheol
    • Journal of Life Science
    • /
    • v.26 no.4
    • /
    • pp.398-405
    • /
    • 2016
  • Statins, the inhibitors of 3-hydroxy 3-methylglutaryl coenzyme A (HMG-CoA) reductase, are widely used in treatments of hypercholesterolemia and newly known as anti-cancer effect of various cancer cells. Recently, several studies suggested that reactive oxygen species (ROS) play a critical role on cell death signaling. However, mechanism of ROS by rosuvastatin is currently unclear. This study aimed to explore the molecular mechanism of apoptosis by rosuvastatin in human prostate cancer PC-3 cells. Cell viability and apoptosis-related protein expression were measured by MTT assay and western blotting, respectively. In addition, the levels of apoptosis and ROS were analyzed. The results showed that rosuvastatin dramatically reduced cell viability in a dose- and time-dependent manner. We confirmed that rosuvastatin induced apoptosis through reduction of procaspase-3 and cleavage of poly (ADP-ribose) polymerase (PARP) in PC-3 cells. In addition, rosuvastatin stimulated ROS production in a dose-dependent manner and pre-treatment with N-acetylcysteine (NAC), a ROS scavenger, significantly recovered rosuvastatin-induced ROS and apoptosis. Thus, we concluded that rosuvastain induces apoptosis through generation of ROS in human prostate cancer PC-3 cells and provides a promising approach to improve the efficacy of cancer therapy.