References
- Raub JA, Mathieu-Nolf M, Hampson NB, et al. Carbon monoxide poisoning--a public health perspective. Toxicology. 2000;145(1):1-14. https://doi.org/10.1016/S0300-483X(99)00217-6
- Rose JJ, Wang L, Xu Q, et al. Carbon Monoxide Poisoning: Pathogenesis, Management, and Future Directions of Therapy. Am J Respir Crit Care Med. 2017;195(5):596-606. https://doi.org/10.1164/rccm.201606-1275ci
- Kim YJ, Sohn CH, Oh BJ, et al. Carbon monoxide poisoning during camping in Korea. Inhal Toxicol. 2016;28(14):719-23 https://doi.org/10.1080/08958378.2016.1260668
- Weaver LK. Carbon Monoxide Poisoning. N Engl J Med. 2009;360(12):1217-25. https://doi.org/10.1056/NEJMcp0808891
- Oh SH, Choi SC. Acute carbon monoxide poisoning and delayed neurological sequelae: a potential neuroprotection bundle therapy. Neural Regen Res. 2015;10(1):36-8. https://doi.org/10.4103/1673-5374.150644
- Hendrickson RG. What is the most appropriate dose of N-acetylcysteine after massive acetaminophen overdose?. Clin Toxicol (Phila). 2019;57(8):686-91 https://doi.org/10.1080/15563650.2019.1579914
- Millea PJ. N-acetylcysteine: multiple clinical applications. Am Fam Physician. 2009;80(3):265-9.
- Deepmala, Slattery J, Kumar N, et al. Clinical trials of N-acetylcysteine in psychiatry and neurology: A systematic review. Neurosci Biobehav Rev. 2015;55:294-321. https://doi.org/10.1016/j.neubiorev.2015.04.015
- Bavarsad Shahripour R, Harrigan MR, Alexandrov AV. N-acetylcysteine (NAC) in neurological disorders: mechanisms of action and therapeutic opportunities. Brain Behav. 2014;4(2):108-22. https://doi.org/10.1002/brb3.208
- Hu H, Gan J, Jonas P. Interneurons. Fast-spiking, parvalbumin (+) GABAergic interneurons: from cellular design to microcircuit function. Science. 2014;345:1255-63. https://doi.org/10.1126/science.345.6202.1255
- Ruden JB, Dugan LL, Konradi C. Parvalbumin interneuron vulnerability and brain disorders. Neuropsychopharmacology. 2021;46(2):279-87. https://doi.org/10.1038/s41386-020-0778-9
- Lee MS, Yang SB, Heo JH. Application of Thallium Autometallography for Observation of Changes in Excitability of Rodent Brain following Acute Carbon Monoxide Intoxication. J Korean Soc Clin Toxicol. 2019;17(2):66-78. https://doi.org/10.22537/JKSCT.2019.17.2.66
- Kim MJ, Choi SJ, Lim ST, et al. Ferulic acid supplementation prevents trimethyltin-induced cognitive deficits in mice. Biosci Biotechnol Biochem. 2007;71(4):1063-8. https://doi.org/10.1271/bbb.60564
- Gusel'nikova VV, Korzhevskiy DE. NeuN As a Neuronal Nuclear Antigen and Neuron Differentiation Marker. Acta naturae. 2015;7(2):42-7. https://doi.org/10.32607/20758251-2015-7-2-42-47
- Hiramatsu M, Sasaki M, Nabeshima T, et al. Effects of dynorphin A (1-13) on carbon monoxide-induced delayed amnesia in mice. Pharmacol Biochem Behav. 1997;56(1):73-9. https://doi.org/10.1016/S0091-3057(96)00159-1
- Hiramatsu M, Inoue K. Des-tyrosine(1) dynorphin A-(2-13) improves carbon monoxide-induced impairment of learning and memory in mice. Brain Res. 2000;859(2):303-10. https://doi.org/10.1016/S0006-8993(00)01994-6
- Fan DF, Hu HJ, Sun Q, et al. Neuroprotective effects of exogenous methane in a rat model of acute carbon monoxide poisoning. Brain Res. 2016;1633:62-72. https://doi.org/10.1016/j.brainres.2015.12.019
- Xue L, Wang WL, Li Y, et al. Effects of hyperbaric oxygen on hippocampal neuronal apoptosis in rats with acute carbon monoxide poisoning. Undersea Hyperb Med. 2017;44(2):121-31. https://doi.org/10.22462/3.4.2017.5
- Freund TF, Buzsaki G. Interneurons of the hippocampus. Hippocampus. 1996;6(4):347-470. https://doi.org/10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I
- Gustafsson B, Wigstrom H. Long-term potentiation in the hippocampal CA1 region: its induction and early temporal development. Prog Brain Res. 1990;83:223-32. https://doi.org/10.1016/S0079-6123(08)61252-2
- Mereu G, Cammalleri M, Fa M, et al. Prenatal exposure to a low concentration of carbon monoxide disrupts hippocampal long-term potentiation in rat offspring. J Pharmacol Exp Ther. 2000;294(2):728-34.
- Johansen FF. Interneurons in rat hippocampus after cerebral ischemia. Morphometric, functional, and therapeutic investigations. Acta Neurol Scand Suppl. 1993;150:1-32.
- Miettinen R, Sirvio J, Riekkinen P Sr, et al. Neocortical, hippocampal and septal parvalbumin- and somatostatin-containing neurons in young and aged rats: correlation with passive avoidance and water maze performance. Neuroscience. 1993;53(2):367-78. https://doi.org/10.1016/0306-4522(93)90201-P
- Cobley JN, Fiorello ML, Bailey DM. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol. 2018;15:490-503. https://doi.org/10.1016/j.redox.2018.01.008
- Akyol S, Erdogan S, Idiz N, et al. The role of reactive oxygen species and oxidative stress in carbon monoxide toxicity: an indepth analysis. Redox Rep. 2014;19(5):180-9. https://doi.org/10.1179/1351000214y.0000000094
- Mannaioni PF, Vannacci A, Masini E. Carbon monoxide: the bad and the good side of the coin, from neuronal death to antiinflammatory activity. Inflamm Res. 2006;55(7):261-73. https://doi.org/10.1007/s00011-006-0084-y
- Kekec Z, Seydaoglul G, Sever H, et al. The effect of antioxidants (N-acetylcysteine and melatonin) on hypoxia due to carbonmonoxide poisoning. Bratisl Lek Listy. 2010;111(4):189-93.
- Sabetghadam M, Mazdeh M, Abolfathi P, et al. Evidence for a Beneficial Effect of Oral N-acetylcysteine on Functional Outcomes and Inflammatory Biomarkers in Patients with Acute Ischemic Stroke. Neuropsychiatr Dis Treat. 2020;16:1265-78. https://doi.org/10.2147/NDT.S241497
- Aldini G, Altomare A, Baron G, et al. N-Acetylcysteine as an antioxidant and disulphide breaking agent: the reasons why. Free Radic Res. 2018;52(7):751-62. https://doi.org/10.1080/10715762.2018.1468564
- Katz M, Won SJ, Park Y, et al. Cerebrospinal fluid concentrations of N-acetylcysteine after oral administration in Parkinson's disease. Parkinsonism Relat Disord. 2015;21(5):500-3. https://doi.org/10.1016/j.parkreldis.2015.02.020