• Title/Summary/Keyword: N-acetyl cysteine

Search Result 154, Processing Time 0.026 seconds

돼지 간장으로 부터 정제한 천연 단백성 Methylation Inhibitor의 S-Farnesylcysteine Methyltransferase 억제효과

  • 남석우;유세근;서동완;남태균;이향우;홍성열
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.262-262
    • /
    • 1994
  • Ras oncogene의 산물로서 대부분의 암조직이나 transformed human cell에서 거의 공통적으로 발견되는 p21 단백질은 C-terminal processing에 의해 먼저 C-terminal cysyeine에 palmition 된 후 carboxylmethylation 된다. Palmitation은 transforming activity의 요건인 세포막에 대한 친화력을 유지시키기 위한것으로 추측되며, cysteine residue의 carboxylmethylation의 의미는 아직 확실히 밝혀지고 있지 않으나 세포막에 대한 친화력을 증가 시키는 것으로 추측되고있다. 본 연구에서는 S-Farnesylcysteine Methyltransferase의 기질로서 N-acetyl-S-trans, trans-farnesyl-L-cysteine(AFC)을 합성하였으며, 본 실험실에서 계속 연구하여 온 돼지 간장으로 부터 정제한 천연 단백성 Methylation Inhibitor의 S-Farnesylcysteine Methyltransferase 활성에 대한 억제효과를 검색하였다. 천연 단백성 Methylation Inhibitor는 돼지 간조직의 soluble fraction을 열처리하여 Sephadex G-25 column chromatngraphy한 후 reverse phase HPLC로 정제하였다. 본 inhibitor는 약 10개의 아미노산으로 구성된 peptide성 천연물질로 분자량은 1,400 Da 으로서 합성한 AFC를 기질로 하였을 때, 흰쥐 뇌 조직내 S-Farnesylcysteine methyltransferase에 대한 $IC_{50}$/은 0,82 $\times$ $10^{-6}$ M이었으며 또한 human cancer cell line의 S-Farnesylcysteine Methyltransferase에 대해서도 현저한 저해효과를 나타내었다.

  • PDF

Sodium Salicylate Inhibits Expression of COX-2 Through Suppression of ERK and Subsequent $NF-{\kappa}B$ Activation in Rat Ventricular Cardiomyocytes

  • Kwon, Keun-Sang;Chae, Han-Jung
    • Archives of Pharmacal Research
    • /
    • v.26 no.7
    • /
    • pp.545-553
    • /
    • 2003
  • The expression of cyclooxygenase-2 (COX-2) is a characteristic response to inflammation, which can be inhibited with sodium salicylate. IL-1$\beta$ and TNF-$\alpha$ can induce extracellular signal-regulated kinase (ERK), IKK, IkB degradation and NF-$\kappa$B activation. Salicylate inhibited the IL-1$\beta$ and TNF-$\alpha$-induced COX-2 expressions, regulated the activation of ERK, IKK and IkB degradation, and the subsequent activation of NF-$\kappa$B, in neonatal rat ventricular cardiomyocytes. The inhibition of the ERK pathway, with a selective inhibitor, PD098059, blocked the expressions of IL-1$\beta$ and TNF-$\alpha$-induced COX-2 and $PGE_2$ release. The antioxidant, N-acetyl-cysteine, also reduced the glutathione or catalase- attenuated COX-2 expressions in IL-1$\beta$ and TNF-$\alpha$-treated cells. This antioxidant also inhibited the activation of ERK and NF-$\kappa$B in neonatal rat cardiomyocytes. In addition, IL-1$\beta$ and TNF-$\alpha$-stimulated the release of reactive oxygen species (ROS) in the cardiomyocytes. However, salicylate had no inhibitory effect on the release of ROS in the DCFDA assay. The results showed that salicylate inhibited the activation of ERK and IKK, I$\kappa$B degradation and NF-$\kappa$B activation, independently of the release of ROS, which suggested that salicylate exerts its anti-inflammatory action through the inhibition of ERK, IKK, IkB and NF-$\kappa$B, and the resultant COX-2 expression pathway in neonatal rat ventricular cardiomyocytes.

A Cell-Based Assay System for Monitoring NF-$\kappa$B Activity in Human Epidermal Keratinocytes: A Screening Tool of the Antioxidants and Anti-inflammatories for Dermatological Purpose

  • Moon, Ki-Young;Hahn, Bum-Soo;Lee, Jinseon;Kim, Yeong-Shik
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.27 no.1
    • /
    • pp.17-27
    • /
    • 2001
  • A cell-based assay system for monitoring NF-$textsc{k}$B activity was developed to determine the influence of activated NF-$textsc{k}$B in human HaCaT cells. The pNF-$textsc{k}$B-SEAP-NPT plasmid that permits expression of the secreted alkaline phosphatase (SEAP) reported gene in response to the NF-$textsc{k}$B activity and contains neomycin phosphotransferase (NPT) gene for the geneticin resistance in host cells was constructed and transfected into human keratinocyte cell line HaCaT. Human HaCaT transfectant cells secreted the SEAP enzyme into the culture medium in a time-dependent manner until 72h. NF-$textsc{k}$B activities were measured in the SEAP reporter gene assay using a fluorescent detection method. The treatment of HaCaT cell transfectants with known antioxidants [e.g., N-acetyl-L-cysteine and vitamin C] showed inhibition of NF-$textsc{k}$B activity in a time-and concentration-dependent manner. The phorbol 12-myristate 13-acetate (PMA) known as a stimulator of NF-$textsc{k}$B expression demonstrated that it increased NF-$textsc{k}$B activity in a time- and concentration-dependent manner. This assay system could be used to determine the quantitative measurement of NF-$textsc{k}$B activity in the human skin and allow the screening of anti-inflammatory agents from various synthetic chemicals and natural products for dermatological purpose. Abbrevitions used: NF-$textsc{k}$B, nuclear factor kappa B; I-$textsc{k}$B, Inhibitory kappa B; SEAP, secreted alkaline phosphatase; NPT, neomycin phosphotransferease; PCR, polymerase chain reaction: dNTP, deoxynucleoside triphosphates; DMEM, dulbecco’s modified eagle medium; FBS, fetal bovine serum; PBs, phosphate-buffered saline; MUP, 4-methylumbellifery phosphate; NAC, N-acetyl-L-cysteine; DMSO, dimethyl sulfoxide; PMA, phorbol 12-myristate 13-acetate.

  • PDF

In Vitro Antioxidant Activity Profiles of ${\beta}$-Glucans Isolated from Yeast Saccharomyces cerevisiae and Mutant Saccharomyces cerevisiae IS2

  • Song, Hee-Sun;Moon, Ki-Young
    • Food Science and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.437-440
    • /
    • 2006
  • To explore the possible usefulness of ${\beta}$-glucans as natural antioxidants, the antioxidant profiles of ${\beta}$-glucan, extracted from Saccharomyces cerevisiae KCTC 7911, and water soluble and insoluble mutant ${\beta}$-glucan, isolated from yeast mutant S. cerevisiae IS2, were examined by five different in vitro evaluation methods: lipid peroxidation value (POV), nitric oxide (NO), 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, reducing power, and ${\beta}$-carotene diffusion assay. The antioxidant activities of all ${\beta}$-glucans evaluated in POV test were comparable to or better than that of the known antioxidant, vitamin C. Remarkably, the ${\beta}$-glucan and water insoluble mutant ${\beta}$-glucan possessed 2.5-fold more potent activity than vitamin C at a dosage of 2 mg. Although vitamin C showed 100-fold greater activity than all ${\beta}$-glucans in NO and DPPH tests for measuring the radical scavenging capacity, all ${\beta}$-glucans revealed higher radical scavenging activity than the known radical scavenger, N-acetyl-L-cysteine (NAC), in DPPH test. The water insoluble mutant ${\beta}$-glucan had 2.6- and 5-fold greater antioxidative activity than water soluble ${\beta}$-glucan in NO and DPPH tests, respectively, showing that all ${\beta}$-glucans were able to scavenge radicals such as NO or DPPH. While all ${\beta}$-glucans revealed lower antioxidant profiles than vitamin C in both reducing power activity and ${\beta}$-carotene agar diffusion assay, the ${\beta}$-glucan and water insoluble mutant ${\beta}$-glucan did show a marginal reducing power activity as well as a considerable ${\beta}$-carotene agar diffusion activity. These results confirmed the potential usefulness of these ${\beta}$-glucans as natural antioxidants.

Dipenyleneiodonium Induces Growth Inhibition of Toxoplasma gondii through ROS Induction in ARPE-19 Cells

  • Sun, Pu Reum;Gao, Fei Fei;Choi, Hei Gwon;Zhou, Wei;Yuk, Jae-Min;Kwon, Jaeyul;Lee, Young-Ha;Cha, Guang-Ho
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.2
    • /
    • pp.83-92
    • /
    • 2019
  • Based on the reactive oxygen species (ROS) regulatory properties of diphenyleneiodonium (DPI), we investigated the effects of DPI on host-infected T. gondii proliferation and determined specific concentration that inhibit the intracellular parasite growth but without severe toxic effect on human retinal pigment epithelial (ARPE-19) cells. As a result, it is observed that host superoxide, mitochondria superoxide and $H_2O_2$ levels can be increased by DPI, significantly, followed by suppression of T. gondii infection and proliferation. The involvement of ROS in anti-parasitic effect of DPI was confirmed by finding that DPI effect on T. gondii can be reversed by ROS scavengers, N-acetyl-L-cysteine and ascorbic acid. These results suggest that, in ARPE-19 cell, DPI can enhance host ROS generation to prevent T. gondii growth. Our study showed DPI is capable of suppressing T. gondii growth in host cells while minimizing the un-favorite side-effect to host cell. These results imply that DPI as a promising candidate material for novel drug development that can ameliorate toxoplasmosis based on ROS regulation.

Multicenter Evaluation on the Efficacy of N-Acetyl Cystine in Relieving the Symptoms of Laryngopharyngeal Reflux Disease (인후두 역류질환에서 N-Acetyl Cysteine의 증상 개선 효과에 대한 다기관 평가)

  • Kim, So Yean;Kwon, Tack Kyun;Kim, Han Su;Son, Young Ik;Woo, Seung Hoon;Woo, Jeong-Soo;Lee, Seung Won;Lim, Jae Yol;Chung, Man Ki;Joo, Young Hoon;Cha, Wonjae;Choi, Seung Ho;Hong, Hyun Jun;Lee, Sang Hyuk
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.29 no.2
    • /
    • pp.87-93
    • /
    • 2018
  • Background and Objectives : Laryngopharyngeal reflux disease (LPRD) is relatively common disease. N-acetyl cysteine (NAC) has both mucolytic and antioxidant effect, also may be beneficial in inflammatory airway diseases. The purpose of this study was to evaluate the efficacy and safety of inhaled NAC therapy in LPRD. Materials and Method : We retrospectively reviewed the medical records of 525 LPRD patients at 12 medical centers. Finally 401 patients subjected to inhaled NAC therapy for 2 months were enrolled in the study. We analyzed the change of Reflux Symptom Index (RSI) and Reflux Finding Score (RFS) after use of NAC for 4 weeks and 8 weeks in addition to the patient's compliance of the treatment. Results : The RSI score significantly decreased from $19.87{\pm}6.34$ to $12.78{\pm}6.93$ after 4 weeks and to $10.65{\pm}7.47$ after 8 weeks. The RFS score also significantly decreased from $9.29{\pm}3.4$ to $7.17{\pm}3.41$ after 4 weeks and to $6.1{\pm}3.73$ after 8 weeks (p<0.05). During the treatment periods, 42 patients (10.4%) reported to have 80 episodes of discomfort. Throat discomfort (33%) and nausea (28%) were most common complaints, but the duration of discomfort was usually less than 4 weeks. Conclusion : Inhaled NAC treatment is highly effective for the reduction of both subjective and objective findings in LPRD patients. This study will provide the evidence of new treatment option for patients with LPRD. However, further studies will be needs to assess the real effect of inhaled NAC therapy as a standard treatment regimen of LPRD.

Transition Metal Induces Apoptosis in MC3T3E1 Osteoblast: Evidence of Free Radical Release

  • Chae, Han-Jung;Chae, Soo-Wan;Kang, Jang-Sook;Yun, Dong-Hyeon;Bang, Byung-Gwan;Kang, Mi-Ra;Kim, Hyung-Min;Kim, Hyung-Ryong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.1
    • /
    • pp.47-54
    • /
    • 2000
  • Transition metal ions including $Se^{2+},\;Cd^{2+},\;Hg^{2+}\;or\;Mn^{2+}$ have been thought to disturb the bone metabolism directly. However, the mechanism for the bone lesion is unknown. In this study, we demonstrated that MC3T3E1 osteoblasts, exposed to various transition metal ions; selenium, cadmium, mercury or manganese, generated massive amounts of reactive oxygen species (ROS). The released ROS were completely quenched by free radical scavengers-N-acetyl cysteine (NAC), reduced glutathione (GSH), or superoxide dismutase (SOD). First, we have observed that selenium $(10\;{\mu}M),$ cadmium $(100\;{\mu}M),$ mercury $(100\;{\mu}M)$ or manganese (1 mM) treatment induced apoptotic phenomena like DNA fragmentation, chromatin condensation and caspase-3-like cysteine protease activation in MC3T3E1 osteoblasts. Concomitant treatment of antioxidant; N-acetyl-L-cysteine (NAC), reduced-form glutathione (GSH), or superoxide dismutase (SOD), prevented apoptosis induced by each of the transition metal ions. Catalase or dimethylsulfoxide (DMSO) has less potent inhibitory effect on the apoptosis, compared with NAC, GSH or SOD. In line with the results, nitroblue tetrazolium (NBT) stain shows that each of the transition metals is a potent source of free radicals in MC3T3E1 osteoblast. Our data show that oxidative damage is associated with the induction of apoptosis in MC3T3E1 osteoblasts following $Se^{2+},\;Cd^{2+},\;Hg^{2+}\;or\;Mn^{2+}$ treatment.

  • PDF

Purification and Characterization of Acetyl Xylan Esterase II from Escherichia coli Cells Harboring Recombinant Plasmid pKMG7 (재조합 균주 Escherichia coli가 생산하는 Bacillus stearothermophilus Acetyl Xylan Esterase II의 정제 및 특성)

  • 김희선;서정한;최용진
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.4
    • /
    • pp.454-460
    • /
    • 1995
  • Acetylxylan esterase II was produced by Escherichia coli HB101 harboring the recombinant plasmid pKMG7 which contained the estII gene of Bacillus stearothermophilus. Optimal medium for the production of the acetylxylan esterase by E. coli HB101/pKMG7 was determined to contain 0.5% galactose, 1% yeast extract and 1% NaCl. The enzyme produced was purified to homogeneity using a combination of 20-50% ammonium sulfate precipitation, DEAE-Sepharose CL-6B chromatography and Sephacryl S-200 gel filtration. The temperature and pH optimum of the esterase were 45$\circ$C and pH 6, respectively. The essential amino acids for the esterase activity were found to be methionine, serine, and cysteine. Molecular weight of the esterase was determined to be 28 kDa by SDS-polyacrylamide gel electrophoresis, and 120 kDa by gel filtration. This suggests that the functional enzyme is a homomeric tetramer. The esterase had an isoelectric point of pH 3.4. The N-terminal amino acid sequence of the enzyme was Ala-Leu-Phe-Glu-Ser-Arg-Phe-Phe-Ser-Glu-Val-Leu-Gly-Leu.

  • PDF

Regulation of Proopiomelanocortin and Melanocortin 1 Receptor by UVB: Inhibitory Effect of Antioxidants

  • Funasaka, Yoko
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.201-204
    • /
    • 2002
  • Epidermal cells produce a panel of antioxidants as well as cytokines after UVB irradiation, which counteract reactive oxygen species, however, how these antioxidants might regulate melanogenesis is unclear. An important constituent of the cellular antioxidant buffering system which controls the redox state of proteins is thioredoxin (TRX), a 13-kD protein that catalyzes thiol-disulfide exchange reactions, regulates activation of transcription factors, and possesses several other biological functions similar to cytokines. TRX suppressed the UVB-induced production and secretion of $\alpha$-melanocyte stimulating hormone ($\alpha$-MSH) and of adrenocorticotropic hormone (ACTH), and also suppressed proopiomelanocortin (POMC) mRNA expression by normal human keratinocyte (KC)s. Further, L-cysteine, N-acetyl-cysteine, $\alpha$-tocopheryl ferulate showed suppressive effect on UVB-induced POMC mRNA expression. However, TRX released from UVB-irradiated KCs stimulated melanogenesis by up-regulating MSH receptor expression and its binding activity in melanocyte (MC)s. UVB-induced KC derived cytokines such as IL1, IL6, and ET1 upregulated MSH-receptor binding ability as well as MCl-R mRNA expression in cultured normal human MCs. MCl-R has a tendency to be upregulated by UVB-induced KC-derived cytokines as well as by direct UVB irradiation. These results suggest that antioxidants such as TRX suppresses UVB induction of POMC, but in the case of MCl-R, this gene can be mainly in the trend of upregulation by UVB-induced KC-derived factors including TRX.

  • PDF