• 제목/요약/키워드: N-V center

검색결과 831건 처리시간 0.024초

인체 뇨중의 숙신산 독실아민의 대사체 (Metabolites of Doxylamine succinate in Human Urine)

  • 엄기동;정병화;정봉철;;박종세
    • 약학회지
    • /
    • 제36권3호
    • /
    • pp.230-240
    • /
    • 1992
  • The metabolic profile of doxylamine, N,N-dimethyl-2-[1-phenyl-1-(2-pyridinyl)ethoxy] ethanamine, was determined in the human urine. The free fractions of extracts were obtained without hydrolysis, and the conjugated fractions of extracts were obtained with enzyme hydrolysis using ${\beta}-glucuronidase/arylsulfatase$ from Helix pomatia. The mixture of acetic anhydride/pyridine (10 : 1, v : v) was used to derivatize the urinary extracts and then analyzed by gas chromatography and mass selective detector. N-desmethyldoxylamine, doxylamine carboxylic acid, desaminohydroxydoxylamine, N, N-didesmethyldoxylamine, N-acetyl conjugates of N-desmethyl and N, N-didesmethyldoxylamine, quarternary ammonium N-glucuronide of doxylamine, N-desmethyldoxylamine N-glucuronide and unchanged doxylamine were detected in the human urine obtained after oral treatment with doxylamine succinate. $N-methyl-{\alpha}-hydroxy-2-[1-phenyl-1-(2-pyridinyl)$ ethoxy] ethanamine, which can be a key intermediate of this metabolism, was tentatively identified by the interpretation of its mass spectrum. In this study, we proposed the metabolic pathway of doxylamine in the human on the basis of our data of the identified metabolites of doxylamine.

  • PDF

HPHT(고온고압)에 의해 처리된 type IIa 천연 다이아몬드의 감별에 관한 연구 (A study on the identification of type IIa natural diamonds treated by the HPHT method)

  • 김영출;최현민
    • 한국결정성장학회지
    • /
    • 제14권1호
    • /
    • pp.21-26
    • /
    • 2004
  • HPHT(고온고압) 처리된 type IIa 다이아몬드의 분광분석 결과를 나타내었다. 그리고 HPHT 처리된 다이아몬드 spectrum의 특성을 이와 유사한 color와 type을 가진 처리되지 않은 다이아몬드와 비교하였다. 325nm 에서 여기된 He/Cd laser로는 HPHT 처리된 다이아몬드와 처리되지 않은 다이아몬드에 현저한 변화가 있음을 알 수 있었는데 이는 HPHT 처리된 다이아몬드의 spectrum에서 H3, H4에 관련된 peak가 제거되고 N3 system에 관련된 peak의 emission이 증가함을 보여 주었다. 또한 514nm에서 여기된 Ar-ion laser로 측정된 spectrum은 575nm와 637.1 nm에서 Nitrogen과 vacancy가 관련되어있는 N-V center가 발견 되었는데 이러한 center가 존재하고 있을 경우 637.1 nm의 FWHM의 값은 HPHT 처리된 다이아몬드와 처리되지 않은 다이아몬드를 구분할 수 있음을 보여주었다. 본 실험에서 측정된 HPHT 처리된 다이아몬드의 637.1nm $(N-V)^-$의 FWHM 값은 $19.8{\textrm}{cm}^{-1}$에서$32.1{\textrm}{cm}^{-1}$였다.

Luminescence characteristics of amorphous GaN quantum dots prepared by laser ablation at room temperature

  • Shim, Seung Hwan;Yoon, Jong-Won;Koshizaki, Naoto;Shim, Kwang Bo
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2003년도 추계학술대회 발표 논문집
    • /
    • pp.109-116
    • /
    • 2003
  • Amorphous GaN Quantum dots(a-GaN QDs) with particle diameters less than bohr radius(~11nm) were successfully fabricated at room temperature by a laser ablation of high densified GaN target. Transmission electron microscopy, SAED diffraction pattern and X-ray photoelectron spectroscopy confirmed the presence of a-GaN QDs with particle size of 7.9, 6.9, 4.4nm under the Ar gas pressures of 50, 100 and 200 Pa, respectively. The room temperature PL and absorbance spectra showed a strong band emission centered at 3.9 eV in a-GaN QDs made under the gas pressures of 100 and 200 Pa, which is nearly 0.5eV blueshifted with respect to the bulk crystal band gap.

  • PDF

Mg가 첨가된 GaN 박막에서 캐리어 전이의 열적도움과 전계유도된 터러링 현상 (Thermally Assisted Carrier Transfer and Field-induced Tunneling in a Mg-doped GaN Thin Film)

  • 정상근;김윤겸;신현길
    • 한국재료학회지
    • /
    • 제12권6호
    • /
    • pp.431-435
    • /
    • 2002
  • The dark current and photocurrent(PC) spectrum of Mg-doped GaN thin film were investigated with various bias voltages and temperatures. At high temperature and small bias, the dark current is dominated by holes thermally activated from an acceptor level Al located at about 0.16 eV above the valence band maximum $(E_v)$, The PC peak originates from the electron transition from deep level A2 located at about 0.34 eV above the $E_v$ to the conduction band minimum $(E_ C)$. However, at a large bias voltage, holes thermally activated from A2 to Al experience the field-in-duces tunneling to form one-dimensional defect band at Al, which determines the dark current. The PC peak associated with the transition from Al to $E_ C$ is also observed at large bias voltages owing to the extended recombination lifetime of holes by the tunneling. In the near infrared region, a strong PC peak at 1.20 eV appears due to the hole transition from deep donor/acceptor level to the valence band.

The critical Mg doping on the blue light emission in p-type GaN thin films grown by metal-organic chemical vapor deposition

  • Kim, Keun-Joo
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 기술교육위원회 창립총회 및 학술대회 의료기기전시회
    • /
    • pp.52-59
    • /
    • 2001
  • The photoluminescence and the photo-current from p-type GaN films were investigated on both room- and low-temperatures for various Mg doping concentrations. At a low Mg doping level, there exists a photoluminescence center of the donor and the acceptor pair transition of the 3.28-eV band. This center is correlated with the defects for a shallow donor of the VGa and for an acceptor of MgGa. The acceptor level shows the binding energy of 0.2-0.25 eV, which was observed by the photon energy of the photo-current signal of 3.02-3.31 eV. At a high Mg doping level, there is a photoluminescence center of a deep donor and an acceptor pair transition of the 2.76-eV blue band. This center is attributed to the defect structures of MgGa-VN for the deep donor and MgGa for the acceptor. For low. doped samples, thermal annealing provides an additional photo-current signal for an unoccupied deep acceptor levels of 0.87-1.35 eV above valence band, indicating the p-type activation.

  • PDF

Pt Doping Mechanism of Vanadium Oxide Cathode Film Grown on ITO Glass for Thin Film Battery

  • Kim, Han-Ki;Seong, Tae-Yeon;Jeon, Eun-Jeong;Cho, Won-Il;Yoon, Young-Soo
    • 한국세라믹학회지
    • /
    • 제38권1호
    • /
    • pp.100-105
    • /
    • 2001
  • An all solid-state thin film battery (TFB) was fabricated by growing, undoped and Pt-doped vanadium oxide cathode film ( $V_2$ $O_{5}$ ) on I $n_2$ $O_3$: Sn coated glass, respectively. Room temperature charge-discharge measurements based on Li/Lipon/ $V_2$ $O_{5}$ full-cell structure with a constant current clearly shows that the Pt-doped $V_2$ $O_{5}$ cathode film is superior, in terms of cyclibility. X-ray diffraction (XRD) results indicate that the Pt doping process induces a more random amorphous structure than an undoped $V_2$ $O_{5}$ film. In addition to its modified structure, the Pt-doped $V_2$ $O_{5}$ film has a smoother surface than the undoped sample. Compared to an undoped $V_2$ $O_{5}$ film, the Pt doped $V_2$ $O_{5}$ cathode film has a higher electron conductivity. We hypothesize that the addition of Pt alters electrochemical performance in a manner of making more random amorphous structure and gives an excess electron by replacing the $V^{+5}$. Possible mechanisms are discussed for the observed Pt doping effect on structural and electrochemical properties of vanadium oxide cathode films, which are grown on I $n_2$ $O_3$: Sn coated glass.

  • PDF

NH3-SCR용 나노분산 TiO2 담체상에 제조된 V2O5WO3/TiO2 촉매: TiO2 분산입도와 NOx 최대 분해온도와의 상관성 (V2O5WO3/TiO2 Catalyst Prepared on Nanodispersed TiO2 for NH3-SCR: Relationship between D ispersed Particle Size of TiO2 and Maximum Decomposition Temperature of NOx)

  • 서민채;반세민;허재구;추용식;문경석;김대성
    • 한국재료학회지
    • /
    • 제32권11호
    • /
    • pp.496-507
    • /
    • 2022
  • For the selective catalytic reduction of NOx with ammonia (NH3-SCR), a V2O5WO3/TiO2 (VW/nTi) catalyst was prepared using V2O5 and WO3 on a nanodispersed TiO2 (nTi) support by simple impregnation process. The nTi support was dispersed for 0~3 hrs under controlled bead-milling in ethanol. The average particle size (D50) of nTi was reduced from 582 nm to 93 nm depending on the milling time. The NOx activity of these catalysts with maximum temperature shift was influenced by the dispersion of the TiO2. For the V0.5W2/nTi-0h catalyst, prepared with 582 nm nTi-0h before milling, the decomposition temperature with over 94 % NOx conversion had a narrow temperature window, within the range of 365-391 ℃. Similarly, the V0.5W2/nTi-2h catalyst, prepared with 107 nm nTi-2h bead-milled for 2hrs, showed a broad temperature window in the range of 358~450 ℃. However, the V0.5W2/Ti catalyst (D50 = 2.4 ㎛, aqueous, without milling) was observed at 325-385 ℃. Our results could pave the way for the production of effective NOx decomposition catalysts with a higher temperature range. This approach is also better at facilitating the dispersion on the support material. NH3-TPD, H2-TPR, FT-IR, and XPS were used to investigate the role of nTi in the DeNOx catalyst.

Influence of Series Resistance and Interface State Density on Electrical Characteristics of Ru/Ni/n-GaN Schottky structure

  • Reddy, M. Siva Pratap;Kwon, Mi-Kyung;Kang, Hee-Sung;Kim, Dong-Seok;Lee, Jung-Hee;Reddy, V. Rajagopal;Jang, Ja-Soon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권5호
    • /
    • pp.492-499
    • /
    • 2013
  • We have investigated the electrical properties of Ru/Ni/n-GaN Schottky structure using current-voltage (I-V) and capacitance-voltage (C-V) measurements at room temperature. The barrier height (${\Phi}_{bo}$) and ideality factor (n) of Ru/Ni/n-GaN Schottky structure are found to be 0.66 eV and 1.44, respectively. The ${\Phi}_{bo}$ and the series resistance ($R_S$) obtained from Cheung's method are compared with modified Norde's method, and it is seen that there is a good agreement with each other. The energy distribution of interface state density ($N_{SS}$) is determined from the I-V measurements by taking into account the bias dependence of the effective barrier height. Further, the interface state density $N_{SS}$ as determined by Terman's method is found to be $2.14{\times}10^{12}\;cm^{-2}\;eV^{-1}$ for the Ru/Ni/n-GaN diode. Results show that the interface state density and series resistance has a significant effect on the electrical characteristics of studied diode.

Comparison of Antibody and T Cell Responses Induced by Single Doses of ChAdOx1 nCoV-19 and BNT162b2 Vaccines

  • Ji Yeun Kim;Seongman Bae;Soonju Park;Ji-Soo Kwon;So Yun Lim;Ji Young Park;Hye Hee Cha;Mi Hyun Seo;Hyun Jung Lee;Nakyung Lee;Jinyeong Heo;David Shum;Youngmee Jee;Sung-Han Kim
    • IMMUNE NETWORK
    • /
    • 제21권4호
    • /
    • pp.29.1-29.9
    • /
    • 2021
  • There are limited data directly comparing humoral and T cell responses to the ChAdOx1 nCoV-19 and BNT162b2 vaccines. We compared Ab and T cell responses after first doses of ChAdOx1 nCoV-19 vs. BNT162b2 vaccines. We enrolled healthcare workers who received ChAdOx1 nCoV-19 or BNT162b2 vaccine in Seoul, Korea. Anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S1 protein-specific IgG Abs (S1-IgG), neutralizing Abs (NT Abs), and SARS-CoV-2-specific T cell response were evaluated before vaccination and at 1-wk intervals for 3 wks after vaccination. A total of 76 persons, comprising 40 injected with the ChAdOx1 vaccine and 36 injected with the BNT162b2 vaccine, participated in this study. At 3 wks after vaccination, the mean levels (±SD) of S1-IgG and NT Abs in the BNT162b2 participants were significantly higher than in the ChAdOx1 participants (S1-IgG, 14.03±7.20 vs. 6.28±8.87, p<0.0001; NT Ab, 183.1±155.6 vs. 116.6±116.2, p=0.035), respectively. However, the mean values of the T cell responses in the 2 groups were comparable after 2 wks. The humoral immune response after the 1st dose of BNT162b2 developed faster and was stronger than after the 1st dose of ChAdOx1. However, the T cell responses to BNT162b2 and ChAdOx1 were similar.

Self-Assembly of Vanadium Borophosphate Cluster Anions: Synthesis and Structures of (NH4)(C2H10N2)5.5[Cu(C2H8N2)2]3[V2P2BO12]6·17H2O and (NH4)(C2H10N2)3.5[Cu(C2H8N2)2]5[V2P2BO12]6·18H2O

  • Jung, Kyung-Na;Cho, Yoon-Suk;Yun, Ho-Seop;Do, Jung-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권8호
    • /
    • pp.1185-1189
    • /
    • 2005
  • Two new copper vanadium borophosphate compounds, $(NH_4)(C_2H_{10}N_2)_{5.5}[Cu(C_2H_8N_2)_2]_3[V_2P_2BO_{12}]_6{\cdot}17H_2O,\;Cu-VBPO1\;and\;(NH_4)(C_2H_{10}N_2)_{3.5}[Cu(C_2H_8N_2)_2]_5[V_2P_2BO_{12}]_6{\cdot}18H_2O$, Cu-VBPO2 have been hydrothermally synthesized and characterized by single crystal X-ray diffraction, thermogravimetric analysis, IR spectroscopy, and elemental analysis. The structure of Cu-VBPO1 contains a layer anion, {$[Cu(C_2H_8N_2)_2]_3[V_2P_2BO_{12}]_6$}$^{12-}$, whereas Cu-VBPO2 has an open framework anion, {$[Cu(C_2H_8N_2)_2]_5[V_2P_2BO_{12}]_6$}$^{8-}$. Crystal Data: $(NH_4)(C_2H_{10}N_2)_{5.5}[Cu(C_2H_8N_2)_2]_3[V_2P_2BO_{12}]_6{\cdot}17H_2O$, monoclinic, space group I2/m (no. 12), $\alpha$ = 15.809(1) $\AA$, b = 31.107(2) $\AA$, c = 12.9343(8) $\AA$, $\beta$ = 104.325(1)$^{\circ}$, Z = 2; $(NH_4)(C_2H_{10}N_2)_{3.5}[Cu(C_2H_8N_2)_2]_5[V_2P_2BO_{12}]_6{\cdot}18H_2O$, tetragonal, space group $P4_2$/mnm (no.136), $\alpha$ = 26.832(1) $\AA$, c = 18.021(1) $\AA$, Z = 4.