• Title/Summary/Keyword: N deposition

Search Result 2,148, Processing Time 0.043 seconds

Characterization and Application of DLC Films Produced by New Combined PVD-CVD Technique

  • Chekan, N.M.;Kim, S.W.;Akula, I.P.;Jhee, T.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.2
    • /
    • pp.75-82
    • /
    • 2010
  • A new advanced combined PVD/CVD technique of DLC film deposition has been developed. Deposition of a DLC film was carried out using a pulsed carbon arc discharge in vapor hydrocarbon atmosphere. The arc plasma enhancing CVD process promotes dramatic increase in the deposition rate and decrease of compressive stress as well as improvement of film thickness uniformity compared to that obtained with a single PVD pulsed arc process. The optical spectroscopy investigation reveals great increase in radiating components of $C_2$ Swan system molecular bands due to acetylene molecules decomposition. AFM, Raman spectroscopy, XPS and nano-indentation were used to characterize DLC films. The method ensures obtaining a new superhard DLC nano-material for deposition of protective coatings onto various industrial products including those used in medicine.

Neural Network Modeling of Charge Concentration of Thin Films Deposited by Plasma-enhanced Chemical Vapor Deposition (플라즈마 화학기상법을 이용하여 증착된 박막 전하 농도의 신경망 모델링)

  • Kim, Woo-Serk;Kim, Byung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.108-110
    • /
    • 2006
  • A prediction model of charge concentration of silicon nitride (SiN) thin films was constructed by using neural network and genetic algorithm. SIN films were deposited by plasma enhanced chemical vapor deposition and the deposition process was characterized by means of $2^{6-1}$ fractional factorial experiment. Effect of five training factors on the model prediction performance was optimized by using genetic algorithm. This was examined as a function of the learring rate. The root mean squared error of optimized model was 0.975, which is much smaller than statistical regression model by about 45%. The constructed model can facilitate a Qualitative analysis of parameter effects on the charge concentration.

  • PDF

Study on the Luminescence of Si Nanocrystallites on Si Substrate Fabricated by Changing the Wavelength of Pulsed laser deposition (펄스레이저 증착법의 레이저 파장변환에 의한 실리콘 나노결정의 발광특성 연구)

  • Kim, Jong-Hoon;Bae, Sang-Hyuck;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.411-412
    • /
    • 2000
  • Si nanocrstallites on p-tyre (100) Si substrate have been fabricated by pulsed laser deposition technique using a Nd:YAG laser with the wavelength of 355, 532 and 1064 nm. The base vacuum in the chamber was down to $10^{-5}$ Torr and the pressure of the gas during deposition was varied from 1 to 3 Torr. After deposition, Si nanocrystallites have been annealed at $N_2$ gas. Nitrogen have been used as ambient gases. Strong blue and green luminescence from Si nanocrystallites has been observed in room temperature by photoluminescence and its peak energies shift to green when the wavelength is increased from 355-1064 nm

  • PDF

A Study on Deposition Mechanism of Laser CVD $SiO_2$ by Process Simulation (공정 Simulation에 의한 Laser CVD $SiO_2$막 형성 기구 규명에 관한 연구)

  • Shin, Sang-Woo;Lee, Sang-Kwon;Kim, Tae-Hun;Sung, Yung-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1301-1303
    • /
    • 1997
  • This study was performed to investigate the deposition mechanism of $SiO_2$ by ArF excimer Laser(193nm) CVD with $Si_2H_6$ and $N_2O$ gas mixture and evaluate Laser CVD quantitatively by modeling. In this study, new model of $SiO_2$ deposition process by Laser CVD is introduced and deposition rates are simulated by computer with the basis on this modeling. And simulation results are compared with experimental results measured at various conditions such as reaction gas ratio, chamber pressure, substrate temperature and laser beam intensity.

  • PDF

Influence of the Deposition Temperature on the Structural and Electrical Properties of LPCVD Silicon Films (증착온도가 LPCVD 실리콘 박막의 물성과 전기적 특성에 미치는 영향)

  • 홍찬희;박창엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.7
    • /
    • pp.760-765
    • /
    • 1992
  • The material properties and the TFT characteristics fabricated on SiOS12T substrate by LPCVD using SiHS14T gas were investigated. The deposition rate showed Arrhenius behavior with an activation energy of 31Kcal/mol. And the transition temperature form amorphous to crystalline deposition was observed at 570$^{\circ}C$-580$^{\circ}C$. The strong(220) texture was observed as the deposition temperature increases. XRD analysis showed that the film texture of the as-deposited polycrystalline silicon does not change after annealing at 850$^{\circ}C$. The fabricated TFT's based on the as-deposited amorphous film showed superior electrical characteristics to those of the as-deposited polycrystalline films. It is considered that the different electrical characteristics result from the difference of flat band voltage(VS1FBT) due to the interface trap density between the gate oxide and the active channel.

Microstructure and Structural Properties of SCT Thin Film (SCT 박막의 미세구조 및 구조적인 특성)

  • Kim, Jin-Sa;Oh, Yong-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.12
    • /
    • pp.576-580
    • /
    • 2006
  • The $(Sr_{0.85}Ca_{0.15})TiO_3(SCT)$ thin films were deposited on Pt-coated electrode $(Pt/TiN/SiO_2/Si)$ using RF sputtering method according to the deposition condition. The crystallinity of SCT thin films were increased with increase of deposition temperature in the temperature range of $100{\sim}500[^{\circ}C]$. The optimum conditions of RF power and $Ar/O_2$ ratio were 140[W] and 80/20, respectively. Deposition rate of SCT thin films was about $18.75[{\AA}/min]$ at the optimum condition. The composition of SCT thin films deposited on Si substrate is close to stoichiometry (1.102 in A/B ratio). The maximum dielectric constant of SCT thin film as obtained by annealing at $600^{\circ}C$.

Characteristics of ZnO Thin Films Prepared by Photo-CVD (광 CVD법으로 제작한 ZnO박막의 특성)

  • 박계춘;정해덕;정운조;류용택
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.05a
    • /
    • pp.117-121
    • /
    • 1992
  • Zinc oxide thin films were obtained from zinc acetate-2-water and oxygen by photo-CVD method. (1) The formation of ZnO films sarts from 100[$^{\circ}C$] and the deposition rate increases with increasing substrate temperature. (2) The rate of deposition was also affected by flow rates of O$_2$(reaction gas) and N$_2$(Carrier gas). (3) The deposition rate decreases with increasing O$_2$mole rate. (4) The transmission of the films was independent of oxygen mole rate and it was largely affected substrate temperature. (5) The electric resistivity of th films was largely varied at oxygen mole rate 10[%] and above 20[%], a plateau was encountered. Also, it increases with increasing substrate temperature. As the results, at substrate temperature: 200[$^{\circ}C$]; O$_2$gas mole rate:10[%]; reation time:10[min] pressure: 10$\^$-2/[atm], deposition rate; transmittance; resistivity were 780[A$\^$0/; 94[%]; 7${\times}$10$\^$-2/[$\Omega$$.$cm] respectively.

  • PDF

Optimization of the $POCI_3$ doping process according to the variation of deposition temperature, gas flow rate and doping time (온도, 가스량 및 도핑시간변화에 따른 $POCI_3$ 도핑 공정의 최적화)

  • 정경화;강정진
    • Electrical & Electronic Materials
    • /
    • v.7 no.3
    • /
    • pp.206-212
    • /
    • 1994
  • In this paper, We discuss the $POCI_3$ doping process according to the variation of deposition temperature, gas flow rate and doping time. The factors acted with $POCI_3$ doping are gas flow rate deposition temperature and time etc. Among them the temperature is the most important factor. For the $POCI_3$ flow rate, it should not exceed the resistivity saturation point developed on poly surface by annealing treatment. Therefore, this study suggests the optimum conditions of Poly-silicon treatments with the $POCI_3$ flow rate.

  • PDF

Barium titanate doping on superconducting perovskite YBCO

  • Soh, Deaw-Ha;Korobova, N.;Li, Ying-Mei;Cho, Yong-Joon;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.120-123
    • /
    • 2000
  • This paper reports a newly developed sol-gel process to synthesize dense YBCO thick films with $BaTiO_3$ additives using electrophoretic deposition and metal alkoxide sol/particle suspension, which we successfully produce dense $YBCO+BaTiO_3$ ceramics at a rather low temperature, compared with the sintering temperature used in conventional methods. The thick films of HTS were prepared by electrophoretic deposition, using pre-sintered powder with barium titanate addition in the form of $BaTi(OR)_6$ solution in suspension for electrophoresis. The conditions for applied voltage and deposition times for electrophoretic deposition of HTS thick films were studied in detail.

  • PDF

Structural study of indium oxide thin films by metal organic chemical vapor deposition (저온화학기상증착에 의한 인듐산화막 구조에 관한 연구)

  • Pammi, S.Venkat.N.;Seong, Nak-Jin;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.47-47
    • /
    • 2007
  • Indium oxide conducting films were dep9sited on Si(100) substrates at various temperatures by liquid delivery metal organic chemical vapor deposition using Indium (III) tris (2,2,6,6-tetramethyl-3.5-heptanedionato) $(dpm)_3$ precursors. The films deposited at $200{\sim}400^{\circ}C$ were grown with a (111) preferred orientation and exhibit an increase of grain size from 21 to 33nm with increasing deposition temperature. In the range of deposition temperature, there is no metallic indium phase in deposited films.

  • PDF